Spaces:
Paused
Paused
import os | |
import traceback | |
import fairseq | |
import numpy as np | |
import soundfile as sf | |
import torch | |
import torch.nn.functional as F | |
device = "cpu" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
model_path = "assets/hubert/hubert_base.pt" | |
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task( | |
[model_path], | |
suffix="", | |
) | |
model = models[0] | |
model = model.to(device) | |
is_half = False | |
if is_half: | |
if device not in ["mps", "cpu"]: | |
model = model.half() | |
model.eval() | |
# wave must be 16k, hop_size=320 | |
def readwave(wav_path, normalize=False): | |
wav, sr = sf.read(wav_path) | |
assert sr == 16000 | |
feats = torch.from_numpy(wav).float() | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
if normalize: | |
with torch.no_grad(): | |
feats = F.layer_norm(feats, feats.shape) | |
feats = feats.view(1, -1) | |
return feats | |
class HubertFeatureExtractor: | |
def __init__(self, exp_dir: str): | |
self.exp_dir = exp_dir | |
self.logfile = open("%s/extract_f0_feature.log" % exp_dir, "a+") | |
self.wavPath = "%s/1_16k_wavs" % exp_dir | |
self.outPath = "%s/3_feature768" % exp_dir | |
os.makedirs(self.outPath, exist_ok=True) | |
def println(self, strr): | |
print(strr) | |
self.logfile.write("%s\n" % strr) | |
self.logfile.flush() | |
def run(self): | |
todo = sorted(list(os.listdir(self.wavPath))) | |
n = max(1, len(todo) // 10) # ζε€ζε°εζ‘ | |
if len(todo) == 0: | |
self.println("no-feature-todo") | |
else: | |
self.println("all-feature-%s" % len(todo)) | |
for idx, file in enumerate(todo): | |
try: | |
if file.endswith(".wav"): | |
wav_path = "%s/%s" % (self.wavPath, file) | |
out_path = "%s/%s" % (self.outPath, file.replace("wav", "npy")) | |
if os.path.exists(out_path): | |
continue | |
feats = readwave(wav_path, normalize=saved_cfg.task.normalize) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": ( | |
feats.half().to(device) | |
if is_half and device not in ["mps", "cpu"] | |
else feats.to(device) | |
), | |
"padding_mask": padding_mask.to(device), | |
"output_layer": 12, | |
} | |
with torch.no_grad(): | |
logits = model.extract_features(**inputs) | |
feats = logits[0] | |
feats = feats.squeeze(0).float().cpu().numpy() | |
if np.isnan(feats).sum() == 0: | |
np.save(out_path, feats, allow_pickle=False) | |
else: | |
self.println("%s-contains nan" % file) | |
if idx % n == 0: | |
self.println( | |
"now-%s,all-%s,%s,%s" | |
% (len(todo), idx, file, feats.shape) | |
) | |
except: | |
self.println(traceback.format_exc()) | |
self.println("all-feature-done") | |