File size: 4,105 Bytes
812b01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
from torchaudio.models import Conformer
from huggingface_hub import PyTorchModelHubMixin
from .config import (
    N_MELS,
    CNN_CH,
    N_HEADS,
    D_MODEL,
    FF_DIM,
    N_LAYERS,
    DROPOUT,
    DEPTHWISE_CONV_KERNEL_SIZE,
    HIDDEN_DIM,
    DEVICE,
)


class TaikoConformer5(nn.Module, PyTorchModelHubMixin):
    def __init__(self):
        super().__init__()
        # 1) CNN frontend: frequency-only pooling
        self.cnn = nn.Sequential(
            nn.Conv2d(1, CNN_CH, 3, stride=(2, 1), padding=1),
            nn.BatchNorm2d(CNN_CH),
            nn.GELU(),
            nn.Dropout2d(DROPOUT),
            nn.Conv2d(CNN_CH, CNN_CH, 3, stride=(2, 1), padding=1),
            nn.BatchNorm2d(CNN_CH),
            nn.GELU(),
            nn.Dropout2d(DROPOUT),
        )
        feat_dim = CNN_CH * (N_MELS // 4)

        # 2) Linear projection to model dimension
        self.proj = nn.Linear(feat_dim, D_MODEL)

        # 3) FiLM conditioning for notes_per_second
        self.film = nn.Linear(1, 2 * D_MODEL)

        # 4) Conformer encoder
        self.encoder = Conformer(
            input_dim=D_MODEL,
            num_heads=N_HEADS,
            ffn_dim=FF_DIM,
            num_layers=N_LAYERS,
            depthwise_conv_kernel_size=DEPTHWISE_CONV_KERNEL_SIZE,
            dropout=DROPOUT,
            use_group_norm=False,
            convolution_first=False,
        )

        # 5) Presence regressor head
        self.presence_regressor = nn.Sequential(
            nn.Dropout(DROPOUT),
            nn.Linear(D_MODEL, HIDDEN_DIM),
            nn.GELU(),
            nn.Dropout(DROPOUT),
            nn.Linear(HIDDEN_DIM, 3),  # Don, Ka, DrumRoll energy
            nn.Sigmoid(),  # Output between 0 and 1
        )

        # 6) Initialize weights
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

    def forward(
        self, mel: torch.Tensor, lengths: torch.Tensor, notes_per_second: torch.Tensor
    ):
        """
        Args:
            mel: (B, 1, N_MELS, T_mel)
            lengths: (B,) lengths after CNN
            notes_per_second: (B,) stream of control values
        Returns:
            Dict with:
                'presence': (B, T_cnn_out, 4)
                'lengths': lengths
        """
        # CNN frontend
        x = self.cnn(mel)  # (B, C, F, T)
        B, C, F, T = x.size()
        x = x.permute(0, 3, 1, 2).reshape(B, T, C * F)

        # Project to model dimension
        x = self.proj(x)  # (B, T, D_MODEL)

        # FiLM conditioning
        nps = notes_per_second.unsqueeze(-1)  # (B, 1)
        gamma_beta = self.film(nps)  # (B, 2*D_MODEL)
        gamma, beta = gamma_beta.chunk(2, dim=-1)
        x = gamma.unsqueeze(1) * x + beta.unsqueeze(1)

        # Conformer encoder
        x, _ = self.encoder(x, lengths=lengths)

        # Presence prediction
        presence = self.presence_regressor(x)
        return {"presence": presence, "lengths": lengths}


if __name__ == "__main__":
    model = TaikoConformer5().to(device=DEVICE)
    print(model)

    for name, param in model.named_parameters():
        if param.requires_grad:
            print(f"{name}: {param.numel():,}")

    params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"Total parameters: {params / 1e6:.2f}M")

    batch_size = 4
    mel_time_steps = 1024
    input_mel = torch.randn(batch_size, 1, N_MELS, mel_time_steps).to(DEVICE)

    conformer_lengths = torch.tensor(
        [mel_time_steps] * batch_size, dtype=torch.long
    ).to(DEVICE)

    notes_per_second_input = torch.tensor([10.0] * batch_size, dtype=torch.float32).to(
        DEVICE
    )

    output = model(input_mel, conformer_lengths, notes_per_second_input)
    print("Output shapes:")
    for key, value in output.items():
        print(f"{key}: {value.shape}")