Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,132 Bytes
812b01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import math
import torch
import torch.nn as nn
import torchaudio
from torchaudio.transforms import FrequencyMasking
from tja import parse_tja, PyParsingMode
from .config import N_TYPES, SAMPLE_RATE, N_MELS, HOP_LENGTH, TIME_SUB
from .model import TaikoConformer6
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_mels=N_MELS,
hop_length=HOP_LENGTH,
n_fft=2048,
)
freq_mask = FrequencyMasking(freq_mask_param=15)
def preprocess(example, difficulty="oni"):
wav_tensor = example["audio"]["array"]
sr = example["audio"]["sampling_rate"]
# 1) load & resample
if sr != SAMPLE_RATE:
wav_tensor = torchaudio.functional.resample(wav_tensor, sr, SAMPLE_RATE)
# normalize audio
wav_tensor = wav_tensor / (wav_tensor.abs().max() + 1e-8)
# add random Gaussian noise
if torch.rand(1).item() < 0.5:
wav_tensor = wav_tensor + 0.005 * torch.randn_like(wav_tensor)
# 2) mel: (1, N_MELS, T)
mel = mel_transform(wav_tensor).unsqueeze(0)
# apply SpecAugment
mel = freq_mask(mel)
_, _, T = mel.shape
# 3) build label sequence of length ceil(T / TIME_SUB)
T_sub = math.ceil(T / TIME_SUB)
# Initialize energy-based labels for Don, Ka, Drumroll
don_labels = torch.zeros(T_sub, dtype=torch.float32)
ka_labels = torch.zeros(T_sub, dtype=torch.float32)
drumroll_labels = torch.zeros(T_sub, dtype=torch.float32)
# Define exponential decay tail parameters
tail_length = 40 # number of frames for decay tail
decay_rate = 8.0 # decay rate parameter, adjust as needed
tail_kernel = torch.exp(
-torch.arange(0, tail_length, dtype=torch.float32) / decay_rate
)
fps = SAMPLE_RATE / HOP_LENGTH
num_valid_notes = 0
for onset in example[difficulty]:
typ, t_start, t_end, *_ = onset
# Assuming N_TYPES in config is appropriately set (e.g., 7 or more)
if typ < 1 or typ > N_TYPES: # Filter out invalid types
continue
num_valid_notes += 1
exact_frame_start = t_start.item() * fps
# Type 1 and 3 are Don, Type 2 and 4 are Ka
if typ == 1 or typ == 3 or typ == 2 or typ == 4:
exact_hit_time_sub = exact_frame_start / TIME_SUB
current_labels = don_labels if (typ == 1 or typ == 3) else ka_labels
start_points_info = []
rounded_hit_time_sub = round(exact_hit_time_sub)
if (
abs(exact_hit_time_sub - rounded_hit_time_sub) < 1e-6
): # Tolerance for float precision
idx_single = int(rounded_hit_time_sub)
if 0 <= idx_single < T_sub:
start_points_info.append({"idx": idx_single, "weight": 1.0})
else:
idx_floor = math.floor(exact_hit_time_sub)
idx_ceil = idx_floor + 1
frac = exact_hit_time_sub - idx_floor
weight_ceil = frac
weight_floor = 1.0 - frac
if weight_floor > 1e-6 and 0 <= idx_floor < T_sub:
start_points_info.append({"idx": idx_floor, "weight": weight_floor})
if weight_ceil > 1e-6 and 0 <= idx_ceil < T_sub:
start_points_info.append({"idx": idx_ceil, "weight": weight_ceil})
for point_info in start_points_info:
start_idx = point_info["idx"]
weight = point_info["weight"]
for k_idx, kernel_val in enumerate(tail_kernel):
target_idx = start_idx + k_idx
if 0 <= target_idx < T_sub:
current_labels[target_idx] = max(
current_labels[target_idx].item(),
weight * kernel_val.item(),
)
# Type 5, 6, 7 are Drumroll
elif typ >= 5 and typ <= 7:
exact_frame_end = t_end.item() * fps
exact_start_time_sub = exact_frame_start / TIME_SUB
exact_end_time_sub = exact_frame_end / TIME_SUB
# Improved drumroll body
body_loop_start_idx = math.floor(exact_start_time_sub)
body_loop_end_idx = math.ceil(exact_end_time_sub)
for dr_idx in range(body_loop_start_idx, body_loop_end_idx):
if 0 <= dr_idx < T_sub:
drumroll_labels[dr_idx] = 1.0
# Improved drumroll tail (starts from exact_end_time_sub)
tail_start_points_info = []
rounded_end_time_sub = round(exact_end_time_sub)
if abs(exact_end_time_sub - rounded_end_time_sub) < 1e-6:
idx_single_tail = int(rounded_end_time_sub)
if 0 <= idx_single_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_single_tail, "weight": 1.0}
)
else:
idx_floor_tail = math.floor(exact_end_time_sub)
idx_ceil_tail = idx_floor_tail + 1
frac_tail = exact_end_time_sub - idx_floor_tail
weight_ceil_tail = frac_tail
weight_floor_tail = 1.0 - frac_tail
if weight_floor_tail > 1e-6 and 0 <= idx_floor_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_floor_tail, "weight": weight_floor_tail}
)
if weight_ceil_tail > 1e-6 and 0 <= idx_ceil_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_ceil_tail, "weight": weight_ceil_tail}
)
for point_info in tail_start_points_info:
start_idx = point_info["idx"]
weight = point_info["weight"]
for k_idx, kernel_val in enumerate(tail_kernel):
target_idx = start_idx + k_idx
if 0 <= target_idx < T_sub:
drumroll_labels[target_idx] = max(
drumroll_labels[target_idx].item(),
weight * kernel_val.item(),
)
duration_seconds = wav_tensor.shape[-1] / SAMPLE_RATE
nps = num_valid_notes / duration_seconds if duration_seconds > 0 else 0.0
parsed = parse_tja(example["tja"], mode=PyParsingMode.Full)
chart = next(
(chart for chart in parsed.charts if chart.course.lower() == difficulty), None
)
difficulty_id = (
0
if difficulty == "easy"
else (
1
if difficulty == "normal"
else 2 if difficulty == "hard" else 3 if difficulty == "oni" else 4
) # Assuming 4 for edit/ura
)
level = chart.level if chart else 0
# --- CNN shape inference and label padding/truncation ---
# Simulate CNN to get output time length (T_cnn)
dummy_model = TaikoConformer6()
with torch.no_grad():
cnn_out = dummy_model.cnn(mel.unsqueeze(0)) # (1, C, F, T_cnn)
_, _, _, T_cnn = cnn_out.shape
# Pad or truncate labels to T_cnn
def pad_or_truncate(label, out_len):
if label.shape[0] < out_len:
pad = torch.zeros(out_len - label.shape[0], dtype=label.dtype)
return torch.cat([label, pad], dim=0)
else:
return label[:out_len]
don_labels = pad_or_truncate(don_labels, T_cnn)
ka_labels = pad_or_truncate(ka_labels, T_cnn)
drumroll_labels = pad_or_truncate(drumroll_labels, T_cnn)
# For conformer input lengths: based on original mel shape (before CNN)
conformer_input_length = min(math.ceil(T / TIME_SUB), T_cnn)
print(
f"Processed {num_valid_notes} notes in {duration_seconds:.2f} seconds, NPS: {nps:.2f}, Difficulty: {difficulty_id}, Level: {level}"
)
return {
"mel": mel, # (1, N_MELS, T)
"don_labels": don_labels, # (T_cnn,)
"ka_labels": ka_labels, # (T_cnn,)
"drumroll_labels": drumroll_labels, # (T_cnn,)
"nps": torch.tensor(nps, dtype=torch.float32),
"difficulty": torch.tensor(difficulty_id, dtype=torch.long),
"level": torch.tensor(level, dtype=torch.long),
"duration_seconds": torch.tensor(duration_seconds, dtype=torch.float32),
"length": torch.tensor(
conformer_input_length, dtype=torch.long
), # for conformer
}
def collate_fn(batch):
mels_list = [b["mel"].squeeze(0).transpose(0, 1) for b in batch] # (T, N_MELS)
don_labels_list = [b["don_labels"] for b in batch]
ka_labels_list = [b["ka_labels"] for b in batch]
drumroll_labels_list = [b["drumroll_labels"] for b in batch]
nps_list = [b["nps"] for b in batch]
difficulty_list = [b["difficulty"] for b in batch]
level_list = [b["level"] for b in batch]
durations_list = [b["duration_seconds"] for b in batch]
lengths_list = [b["length"] for b in batch]
# Pad mels
padded_mels = nn.utils.rnn.pad_sequence(
mels_list, batch_first=True
) # (B, T_max, N_MELS)
reshaped_mels = padded_mels.transpose(1, 2).unsqueeze(1)
T_max = padded_mels.shape[1]
# Pad labels to T_max
def pad_label(label, out_len):
if label.shape[0] < out_len:
pad = torch.zeros(out_len - label.shape[0], dtype=label.dtype)
return torch.cat([label, pad], dim=0)
else:
return label[:out_len]
don_labels = torch.stack([pad_label(l, T_max) for l in don_labels_list])
ka_labels = torch.stack([pad_label(l, T_max) for l in ka_labels_list])
drumroll_labels = torch.stack([pad_label(l, T_max) for l in drumroll_labels_list])
lengths = torch.tensor(
[min(l.item(), T_max) for l in lengths_list], dtype=torch.long
)
return {
"mel": reshaped_mels,
"don_labels": don_labels,
"ka_labels": ka_labels,
"drumroll_labels": drumroll_labels,
"lengths": lengths, # for conformer
"nps": torch.stack(nps_list),
"difficulty": torch.stack(difficulty_list),
"level": torch.stack(level_list),
"durations": torch.stack(durations_list),
}
|