Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,331 Bytes
812b01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from accelerate.utils import set_seed
set_seed(1024)
import math
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from datasets import concatenate_datasets
import matplotlib.pyplot as plt
import numpy as np
from .config import (
BATCH_SIZE,
DEVICE,
EPOCHS,
LR,
GRAD_ACCUM_STEPS,
HOP_LENGTH,
SAMPLE_RATE,
)
from .model import TaikoConformer6
from .dataset import ds
from .preprocess import preprocess, collate_fn
from .loss import TaikoEnergyLoss
from huggingface_hub import upload_folder
# --- Helper function to log energy plots ---
def log_energy_plots_to_tensorboard(
writer,
tag_prefix,
epoch,
pred_don,
pred_ka,
pred_drumroll,
true_don,
true_ka,
true_drumroll,
valid_length, # Actual valid length of the sequence (before padding)
hop_sec,
):
"""
Logs a plot of predicted vs. true energies for one sample to TensorBoard.
Energies should be 1D numpy arrays for the single sample, up to valid_length.
"""
# Ensure data is on CPU and converted to numpy, and select only the valid part
pred_don = pred_don[:valid_length].detach().cpu().numpy()
pred_ka = pred_ka[:valid_length].detach().cpu().numpy()
pred_drumroll = pred_drumroll[:valid_length].detach().cpu().numpy()
true_don = true_don[:valid_length].cpu().numpy()
true_ka = true_ka[:valid_length].cpu().numpy()
true_drumroll = true_drumroll[:valid_length].cpu().numpy()
time_axis = np.arange(valid_length) * hop_sec
fig, axs = plt.subplots(3, 1, figsize=(15, 10), sharex=True)
fig.suptitle(f"{tag_prefix} - Epoch {epoch}", fontsize=16)
axs[0].plot(time_axis, true_don, label="True Don", color="blue", linestyle="--")
axs[0].plot(time_axis, pred_don, label="Pred Don", color="lightblue", alpha=0.8)
axs[0].set_ylabel("Don Energy")
axs[0].legend()
axs[0].grid(True)
axs[1].plot(time_axis, true_ka, label="True Ka", color="red", linestyle="--")
axs[1].plot(time_axis, pred_ka, label="Pred Ka", color="lightcoral", alpha=0.8)
axs[1].set_ylabel("Ka Energy")
axs[1].legend()
axs[1].grid(True)
axs[2].plot(
time_axis, true_drumroll, label="True Drumroll", color="green", linestyle="--"
)
axs[2].plot(
time_axis, pred_drumroll, label="Pred Drumroll", color="lightgreen", alpha=0.8
)
axs[2].set_ylabel("Drumroll Energy")
axs[2].set_xlabel("Time (s)")
axs[2].legend()
axs[2].grid(True)
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Adjust layout to make space for suptitle
writer.add_figure(f"{tag_prefix}/Energy_Comparison", fig, epoch)
plt.close(fig)
def main():
global ds
# Calculate hop seconds for model output frames
# This assumes the model output time dimension corresponds to the mel spectrogram time dimension
output_frame_hop_sec = HOP_LENGTH / SAMPLE_RATE
best_val_loss = float("inf")
patience = 10 # Increased patience a bit
pat_count = 0
ds_oni = ds.map(
preprocess,
remove_columns=ds.column_names,
fn_kwargs={"difficulty": "oni"},
writer_batch_size=10,
)
ds_hard = ds.map(
preprocess,
remove_columns=ds.column_names,
fn_kwargs={"difficulty": "hard"},
writer_batch_size=10,
)
ds_normal = ds.map(
preprocess,
remove_columns=ds.column_names,
fn_kwargs={"difficulty": "normal"},
writer_batch_size=10,
)
ds = concatenate_datasets([ds_oni, ds_hard, ds_normal])
ds_train_test = ds.train_test_split(test_size=0.1, seed=42)
# ds_train_test.push_to_hub("JacobLinCool/taiko-conformer-6-ds")
train_loader = DataLoader(
ds_train_test["train"],
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=collate_fn,
num_workers=16,
persistent_workers=True,
prefetch_factor=4,
)
val_loader = DataLoader(
ds_train_test["test"],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=collate_fn,
num_workers=16,
persistent_workers=True,
prefetch_factor=4,
)
model = TaikoConformer6().to(DEVICE)
optimizer = torch.optim.AdamW(model.parameters(), lr=LR)
criterion = TaikoEnergyLoss(reduction="mean").to(DEVICE)
# Adjust scheduler steps for gradient accumulation
num_optimizer_steps_per_epoch = math.ceil(len(train_loader) / GRAD_ACCUM_STEPS)
total_optimizer_steps = EPOCHS * num_optimizer_steps_per_epoch
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, max_lr=LR, total_steps=total_optimizer_steps
)
writer = SummaryWriter()
for epoch in range(1, EPOCHS + 1):
model.train()
total_epoch_loss = 0.0
optimizer.zero_grad()
for idx, batch in enumerate(tqdm(train_loader, desc=f"Train Epoch {epoch}")):
mel = batch["mel"].to(DEVICE)
# Unpack new energy-based labels
don_labels = batch["don_labels"].to(DEVICE)
ka_labels = batch["ka_labels"].to(DEVICE)
drumroll_labels = batch["drumroll_labels"].to(DEVICE)
lengths = batch["lengths"].to(
DEVICE
) # These are for the Conformer model output
nps = batch["nps"].to(DEVICE)
difficulty = batch["difficulty"].to(DEVICE) # Add difficulty
level = batch["level"].to(DEVICE) # Add level
output_dict = model(
mel, lengths, nps, difficulty, level
) # Pass difficulty and level
# output_dict["presence"] is now (B, T_out, 3) for don, ka, drumroll energies
pred_energies_batch = output_dict["presence"] # (B, T_out, 3)
loss_input_batch = {
"don_labels": don_labels,
"ka_labels": ka_labels,
"drumroll_labels": drumroll_labels,
"lengths": lengths, # Pass lengths for masking within the loss function
}
loss = criterion(output_dict, loss_input_batch)
(loss / GRAD_ACCUM_STEPS).backward()
if (idx + 1) % GRAD_ACCUM_STEPS == 0 or (idx + 1) == len(train_loader):
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
total_epoch_loss += loss.item()
# Log plot for the first sample of the first batch in each training epoch
if idx == 0:
first_sample_pred_don = pred_energies_batch[0, :, 0]
first_sample_pred_ka = pred_energies_batch[0, :, 1]
first_sample_pred_drumroll = pred_energies_batch[0, :, 2]
first_sample_true_don = don_labels[0, :]
first_sample_true_ka = ka_labels[0, :]
first_sample_true_drumroll = drumroll_labels[0, :]
first_sample_length = lengths[
0
].item() # Get the valid length of the first sample
log_energy_plots_to_tensorboard(
writer,
"Train/Sample_0",
epoch,
first_sample_pred_don,
first_sample_pred_ka,
first_sample_pred_drumroll,
first_sample_true_don,
first_sample_true_ka,
first_sample_true_drumroll,
first_sample_length,
output_frame_hop_sec,
)
avg_train_loss = total_epoch_loss / len(train_loader)
writer.add_scalar("Loss/Train_Avg", avg_train_loss, epoch)
# Validation
model.eval()
total_val_loss = 0.0
# Removed storage for classification logits/labels and confusion matrix components
with torch.no_grad():
for val_idx, batch in enumerate(
tqdm(val_loader, desc=f"Val Epoch {epoch}")
):
mel = batch["mel"].to(DEVICE)
don_labels = batch["don_labels"].to(DEVICE)
ka_labels = batch["ka_labels"].to(DEVICE)
drumroll_labels = batch["drumroll_labels"].to(DEVICE)
lengths = batch["lengths"].to(DEVICE)
nps = batch["nps"].to(DEVICE) # Ground truth NPS from batch
difficulty = batch["difficulty"].to(DEVICE) # Add difficulty
level = batch["level"].to(DEVICE) # Add level
output_dict = model(
mel, lengths, nps, difficulty, level
) # Pass difficulty and level
pred_energies_val_batch = output_dict["presence"] # (B, T_out, 3)
val_loss_input_batch = {
"don_labels": don_labels,
"ka_labels": ka_labels,
"drumroll_labels": drumroll_labels,
"lengths": lengths,
}
val_loss = criterion(output_dict, val_loss_input_batch)
total_val_loss += val_loss.item()
# Log plot for the first sample of the first batch in each validation epoch
if val_idx == 0:
first_val_sample_pred_don = pred_energies_val_batch[0, :, 0]
first_val_sample_pred_ka = pred_energies_val_batch[0, :, 1]
first_val_sample_pred_drumroll = pred_energies_val_batch[0, :, 2]
first_val_sample_true_don = don_labels[0, :]
first_val_sample_true_ka = ka_labels[0, :]
first_val_sample_true_drumroll = drumroll_labels[0, :]
first_val_sample_length = lengths[0].item()
log_energy_plots_to_tensorboard(
writer,
"Eval/Sample_0",
epoch,
first_val_sample_pred_don,
first_val_sample_pred_ka,
first_val_sample_pred_drumroll,
first_val_sample_true_don,
first_val_sample_true_ka,
first_val_sample_true_drumroll,
first_val_sample_length,
output_frame_hop_sec,
)
# Log ground truth NPS for reference during validation if needed
# writer.add_scalar("NPS/GT_Val_Batch_Avg", nps.mean().item(), epoch * len(val_loader) + idx)
avg_val_loss = total_val_loss / len(val_loader)
writer.add_scalar("Loss/Val_Avg", avg_val_loss, epoch)
# Log learning rate
current_lr = optimizer.param_groups[0]["lr"]
writer.add_scalar("LR/learning_rate", current_lr, epoch)
# Log ground truth NPS from the last validation batch (or mean over epoch)
if "nps" in batch: # Check if nps is in the last batch
writer.add_scalar(
"NPS/GT_Val_LastBatch_Avg", batch["nps"].mean().item(), epoch
)
print(
f"Epoch {epoch:02d} | Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f} | LR: {current_lr:.2e}"
)
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
pat_count = 0
torch.save(model.state_dict(), "best_model.pt") # Changed model save name
print(f"Saved new best model to best_model.pt at epoch {epoch}")
else:
pat_count += 1
if pat_count >= patience:
print("Early stopping!")
break
writer.close()
model_id = "JacobLinCool/taiko-conformer-6"
try:
model.push_to_hub(model_id, commit_message="Upload trained model")
upload_folder(
repo_id=model_id,
folder_path="runs",
path_in_repo=".",
commit_message="Upload training logs",
ignore_patterns=["*.txt", "*.json", "*.csv"],
)
print(f"Model and logs uploaded to {model_id}")
except Exception as e:
print(f"Error uploading to Hugging Face Hub: {e}")
print("Make sure you have the correct permissions and try again.")
if __name__ == "__main__":
main()
|