tc5-exp / tc5 /preprocess.py
JacobLinCool's picture
Implement TaikoConformer7 model, loss function, preprocessing, and training pipeline
812b01c
raw
history blame
8.28 kB
import math
import torch
import torch.nn as nn
import torchaudio
from torchaudio.transforms import FrequencyMasking
from .config import N_TYPES, SAMPLE_RATE, N_MELS, HOP_LENGTH, TIME_SUB
from .model import TaikoConformer5
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_mels=N_MELS,
hop_length=HOP_LENGTH,
n_fft=2048,
)
freq_mask = FrequencyMasking(freq_mask_param=15)
def preprocess(example, difficulty="oni"):
wav_tensor = example["audio"]["array"]
sr = example["audio"]["sampling_rate"]
# 1) load & resample
if sr != SAMPLE_RATE:
wav_tensor = torchaudio.functional.resample(wav_tensor, sr, SAMPLE_RATE)
# normalize audio
wav_tensor = wav_tensor / (wav_tensor.abs().max() + 1e-8)
# add random Gaussian noise
if torch.rand(1).item() < 0.5:
wav_tensor = wav_tensor + 0.005 * torch.randn_like(wav_tensor)
# 2) mel: (1, N_MELS, T)
mel = mel_transform(wav_tensor).unsqueeze(0)
# apply SpecAugment
# we don't use time masking since we don't want model to predict notes when they are masked
mel = freq_mask(mel)
_, _, T = mel.shape
# 3) build label sequence of length ceil(T / TIME_SUB)
T_sub = math.ceil(T / TIME_SUB)
# Initialize energy-based labels for Don, Ka, Drumroll
don_labels = torch.zeros(T_sub, dtype=torch.float32)
ka_labels = torch.zeros(T_sub, dtype=torch.float32)
drumroll_labels = torch.zeros(T_sub, dtype=torch.float32)
# Define exponential decay tail parameters
tail_length = 40 # number of frames for decay tail
decay_rate = 8.0 # decay rate parameter, adjust as needed
tail_kernel = torch.exp(
-torch.arange(0, tail_length, dtype=torch.float32) / decay_rate
)
fps = SAMPLE_RATE / HOP_LENGTH
num_valid_notes = 0
for onset in example[difficulty]:
typ, t_start, t_end, *_ = onset
# Assuming N_TYPES in config is appropriately set (e.g., 7 or more)
if typ < 1 or typ > N_TYPES: # Filter out invalid types
continue
num_valid_notes += 1
f = int(round(t_start.item() * fps))
idx = f // TIME_SUB
if 0 <= idx < T_sub:
# Apply exponential decay kernel to the corresponding energy channel
# Type 1 and 3 are Don
if typ == 1 or typ == 3:
for i, val in enumerate(tail_kernel):
target_idx = idx + i
if 0 <= target_idx < T_sub:
don_labels[target_idx] = max(
don_labels[target_idx].item(), val.item()
)
# Type 2 and 4 are Ka
elif typ == 2 or typ == 4:
for i, val in enumerate(tail_kernel):
target_idx = idx + i
if 0 <= target_idx < T_sub:
ka_labels[target_idx] = max(
ka_labels[target_idx].item(), val.item()
)
# Type 5, 6, 7 are Drumroll
elif typ >= 5 and typ <= 7:
f_end = int(round(t_end.item() * fps))
idx_end = f_end // TIME_SUB
for dr in range(idx, idx_end):
if 0 <= dr < T_sub:
drumroll_labels[dr] = 1.0
for i, val in enumerate(tail_kernel):
target_idx = idx_end + i
if 0 <= target_idx < T_sub:
drumroll_labels[target_idx] = max(
drumroll_labels[target_idx].item(), val.item()
)
duration_seconds = wav_tensor.shape[-1] / SAMPLE_RATE
nps = num_valid_notes / duration_seconds if duration_seconds > 0 else 0.0
print(
f"Processed {num_valid_notes} notes in {duration_seconds:.2f} seconds, NPS: {nps:.2f}"
)
return {
"mel": mel,
"don_labels": don_labels,
"ka_labels": ka_labels,
"drumroll_labels": drumroll_labels,
"nps": torch.tensor(nps, dtype=torch.float32),
"duration_seconds": torch.tensor(duration_seconds, dtype=torch.float32),
}
def collate_fn(batch):
mels_list = [b["mel"].squeeze(0).transpose(0, 1) for b in batch] # (T, N_MELS)
# Extract new energy-based labels
don_labels_list = [b["don_labels"] for b in batch]
ka_labels_list = [b["ka_labels"] for b in batch]
drumroll_labels_list = [b["drumroll_labels"] for b in batch]
nps_list = [b["nps"] for b in batch] # Extract NPS
durations_list = [b["duration_seconds"] for b in batch] # Extract durations
# Pad mels
padded_mels = nn.utils.rnn.pad_sequence(
mels_list, batch_first=True
) # (B, T_max, N_MELS)
# Reshape for CNN: (B, 1, N_MELS, T_max)
reshaped_mels = padded_mels.transpose(1, 2).unsqueeze(1)
# Simulate CNN time downsampling to get output lengths
dummy_model_for_shape_inference = TaikoConformer5()
dummy_cnn = dummy_model_for_shape_inference.cnn
with torch.no_grad():
cnn_out = dummy_cnn(reshaped_mels) # Use reshaped_mels that has batch dim
_, _, _, T_cnn = cnn_out.shape
padded_don_labels = []
padded_ka_labels = []
padded_drumroll_labels = []
# lengths = [] # This was for original presence/type labels, conformer_input_lengths is used for model
for i in range(len(batch)):
d_labels = don_labels_list[i]
k_labels = ka_labels_list[i]
dr_labels = drumroll_labels_list[i]
item_original_T_sub = d_labels.shape[
0
] # Assuming all label types have same original length
out_len = T_cnn # Target length for labels is T_cnn
# Pad or truncate don_labels
if item_original_T_sub < out_len:
pad_d = torch.full(
(out_len - item_original_T_sub,),
0, # Pad with 0 for energy labels
dtype=d_labels.dtype,
device=d_labels.device,
)
padded_d = torch.cat([d_labels, pad_d], dim=0)
else:
padded_d = d_labels[:out_len]
padded_don_labels.append(padded_d)
# Pad or truncate ka_labels
if item_original_T_sub < out_len:
pad_k = torch.full(
(out_len - item_original_T_sub,),
0, # Pad with 0 for energy labels
dtype=k_labels.dtype,
device=k_labels.device,
)
padded_k = torch.cat([k_labels, pad_k], dim=0)
else:
padded_k = k_labels[:out_len]
padded_ka_labels.append(padded_k)
# Pad or truncate drumroll_labels
if item_original_T_sub < out_len:
pad_dr = torch.full(
(out_len - item_original_T_sub,),
0, # Pad with 0 for energy labels
dtype=dr_labels.dtype,
device=dr_labels.device,
)
padded_dr = torch.cat([dr_labels, pad_dr], dim=0)
else:
padded_dr = dr_labels[:out_len]
padded_drumroll_labels.append(padded_dr)
# For Conformer input lengths: lengths of mel sequences after CNN subsampling
# (Assuming CNN does not subsample in time, T_cnn is effectively T_mel_padded)
# The `lengths` for the Conformer should be based on the mel input to the conformer part.
# The existing calculation for conformer_input_lengths seems to relate to TIME_SUB.
# If the Conformer input itself is not subsampled by TIME_SUB, this might need review.
# For now, keeping the existing conformer_input_lengths logic as it's outside the scope of label change.
conformer_input_lengths = [
math.ceil(mels_list[i].shape[0] / TIME_SUB) for i in range(len(batch))
]
conformer_input_lengths = torch.tensor(
[min(l, T_cnn) for l in conformer_input_lengths], dtype=torch.long
)
return {
"mel": reshaped_mels,
"don_labels": torch.stack(padded_don_labels),
"ka_labels": torch.stack(padded_ka_labels),
"drumroll_labels": torch.stack(padded_drumroll_labels),
"lengths": conformer_input_lengths, # These are for the Conformer model
"nps": torch.stack(nps_list),
"durations": torch.stack(durations_list),
}