tc5-exp / tc6 /preprocess.py
JacobLinCool's picture
Implement TaikoConformer7 model, loss function, preprocessing, and training pipeline
812b01c
raw
history blame
10.1 kB
import math
import torch
import torch.nn as nn
import torchaudio
from torchaudio.transforms import FrequencyMasking
from tja import parse_tja, PyParsingMode
from .config import N_TYPES, SAMPLE_RATE, N_MELS, HOP_LENGTH, TIME_SUB
from .model import TaikoConformer6
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_mels=N_MELS,
hop_length=HOP_LENGTH,
n_fft=2048,
)
freq_mask = FrequencyMasking(freq_mask_param=15)
def preprocess(example, difficulty="oni"):
wav_tensor = example["audio"]["array"]
sr = example["audio"]["sampling_rate"]
# 1) load & resample
if sr != SAMPLE_RATE:
wav_tensor = torchaudio.functional.resample(wav_tensor, sr, SAMPLE_RATE)
# normalize audio
wav_tensor = wav_tensor / (wav_tensor.abs().max() + 1e-8)
# add random Gaussian noise
if torch.rand(1).item() < 0.5:
wav_tensor = wav_tensor + 0.005 * torch.randn_like(wav_tensor)
# 2) mel: (1, N_MELS, T)
mel = mel_transform(wav_tensor).unsqueeze(0)
# apply SpecAugment
mel = freq_mask(mel)
_, _, T = mel.shape
# 3) build label sequence of length ceil(T / TIME_SUB)
T_sub = math.ceil(T / TIME_SUB)
# Initialize energy-based labels for Don, Ka, Drumroll
don_labels = torch.zeros(T_sub, dtype=torch.float32)
ka_labels = torch.zeros(T_sub, dtype=torch.float32)
drumroll_labels = torch.zeros(T_sub, dtype=torch.float32)
# Define exponential decay tail parameters
tail_length = 40 # number of frames for decay tail
decay_rate = 8.0 # decay rate parameter, adjust as needed
tail_kernel = torch.exp(
-torch.arange(0, tail_length, dtype=torch.float32) / decay_rate
)
fps = SAMPLE_RATE / HOP_LENGTH
num_valid_notes = 0
for onset in example[difficulty]:
typ, t_start, t_end, *_ = onset
# Assuming N_TYPES in config is appropriately set (e.g., 7 or more)
if typ < 1 or typ > N_TYPES: # Filter out invalid types
continue
num_valid_notes += 1
exact_frame_start = t_start.item() * fps
# Type 1 and 3 are Don, Type 2 and 4 are Ka
if typ == 1 or typ == 3 or typ == 2 or typ == 4:
exact_hit_time_sub = exact_frame_start / TIME_SUB
current_labels = don_labels if (typ == 1 or typ == 3) else ka_labels
start_points_info = []
rounded_hit_time_sub = round(exact_hit_time_sub)
if (
abs(exact_hit_time_sub - rounded_hit_time_sub) < 1e-6
): # Tolerance for float precision
idx_single = int(rounded_hit_time_sub)
if 0 <= idx_single < T_sub:
start_points_info.append({"idx": idx_single, "weight": 1.0})
else:
idx_floor = math.floor(exact_hit_time_sub)
idx_ceil = idx_floor + 1
frac = exact_hit_time_sub - idx_floor
weight_ceil = frac
weight_floor = 1.0 - frac
if weight_floor > 1e-6 and 0 <= idx_floor < T_sub:
start_points_info.append({"idx": idx_floor, "weight": weight_floor})
if weight_ceil > 1e-6 and 0 <= idx_ceil < T_sub:
start_points_info.append({"idx": idx_ceil, "weight": weight_ceil})
for point_info in start_points_info:
start_idx = point_info["idx"]
weight = point_info["weight"]
for k_idx, kernel_val in enumerate(tail_kernel):
target_idx = start_idx + k_idx
if 0 <= target_idx < T_sub:
current_labels[target_idx] = max(
current_labels[target_idx].item(),
weight * kernel_val.item(),
)
# Type 5, 6, 7 are Drumroll
elif typ >= 5 and typ <= 7:
exact_frame_end = t_end.item() * fps
exact_start_time_sub = exact_frame_start / TIME_SUB
exact_end_time_sub = exact_frame_end / TIME_SUB
# Improved drumroll body
body_loop_start_idx = math.floor(exact_start_time_sub)
body_loop_end_idx = math.ceil(exact_end_time_sub)
for dr_idx in range(body_loop_start_idx, body_loop_end_idx):
if 0 <= dr_idx < T_sub:
drumroll_labels[dr_idx] = 1.0
# Improved drumroll tail (starts from exact_end_time_sub)
tail_start_points_info = []
rounded_end_time_sub = round(exact_end_time_sub)
if abs(exact_end_time_sub - rounded_end_time_sub) < 1e-6:
idx_single_tail = int(rounded_end_time_sub)
if 0 <= idx_single_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_single_tail, "weight": 1.0}
)
else:
idx_floor_tail = math.floor(exact_end_time_sub)
idx_ceil_tail = idx_floor_tail + 1
frac_tail = exact_end_time_sub - idx_floor_tail
weight_ceil_tail = frac_tail
weight_floor_tail = 1.0 - frac_tail
if weight_floor_tail > 1e-6 and 0 <= idx_floor_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_floor_tail, "weight": weight_floor_tail}
)
if weight_ceil_tail > 1e-6 and 0 <= idx_ceil_tail < T_sub:
tail_start_points_info.append(
{"idx": idx_ceil_tail, "weight": weight_ceil_tail}
)
for point_info in tail_start_points_info:
start_idx = point_info["idx"]
weight = point_info["weight"]
for k_idx, kernel_val in enumerate(tail_kernel):
target_idx = start_idx + k_idx
if 0 <= target_idx < T_sub:
drumroll_labels[target_idx] = max(
drumroll_labels[target_idx].item(),
weight * kernel_val.item(),
)
duration_seconds = wav_tensor.shape[-1] / SAMPLE_RATE
nps = num_valid_notes / duration_seconds if duration_seconds > 0 else 0.0
parsed = parse_tja(example["tja"], mode=PyParsingMode.Full)
chart = next(
(chart for chart in parsed.charts if chart.course.lower() == difficulty), None
)
difficulty_id = (
0
if difficulty == "easy"
else (
1
if difficulty == "normal"
else 2 if difficulty == "hard" else 3 if difficulty == "oni" else 4
) # Assuming 4 for edit/ura
)
level = chart.level if chart else 0
# --- CNN shape inference and label padding/truncation ---
# Simulate CNN to get output time length (T_cnn)
dummy_model = TaikoConformer6()
with torch.no_grad():
cnn_out = dummy_model.cnn(mel.unsqueeze(0)) # (1, C, F, T_cnn)
_, _, _, T_cnn = cnn_out.shape
# Pad or truncate labels to T_cnn
def pad_or_truncate(label, out_len):
if label.shape[0] < out_len:
pad = torch.zeros(out_len - label.shape[0], dtype=label.dtype)
return torch.cat([label, pad], dim=0)
else:
return label[:out_len]
don_labels = pad_or_truncate(don_labels, T_cnn)
ka_labels = pad_or_truncate(ka_labels, T_cnn)
drumroll_labels = pad_or_truncate(drumroll_labels, T_cnn)
# For conformer input lengths: based on original mel shape (before CNN)
conformer_input_length = min(math.ceil(T / TIME_SUB), T_cnn)
print(
f"Processed {num_valid_notes} notes in {duration_seconds:.2f} seconds, NPS: {nps:.2f}, Difficulty: {difficulty_id}, Level: {level}"
)
return {
"mel": mel, # (1, N_MELS, T)
"don_labels": don_labels, # (T_cnn,)
"ka_labels": ka_labels, # (T_cnn,)
"drumroll_labels": drumroll_labels, # (T_cnn,)
"nps": torch.tensor(nps, dtype=torch.float32),
"difficulty": torch.tensor(difficulty_id, dtype=torch.long),
"level": torch.tensor(level, dtype=torch.long),
"duration_seconds": torch.tensor(duration_seconds, dtype=torch.float32),
"length": torch.tensor(
conformer_input_length, dtype=torch.long
), # for conformer
}
def collate_fn(batch):
mels_list = [b["mel"].squeeze(0).transpose(0, 1) for b in batch] # (T, N_MELS)
don_labels_list = [b["don_labels"] for b in batch]
ka_labels_list = [b["ka_labels"] for b in batch]
drumroll_labels_list = [b["drumroll_labels"] for b in batch]
nps_list = [b["nps"] for b in batch]
difficulty_list = [b["difficulty"] for b in batch]
level_list = [b["level"] for b in batch]
durations_list = [b["duration_seconds"] for b in batch]
lengths_list = [b["length"] for b in batch]
# Pad mels
padded_mels = nn.utils.rnn.pad_sequence(
mels_list, batch_first=True
) # (B, T_max, N_MELS)
reshaped_mels = padded_mels.transpose(1, 2).unsqueeze(1)
T_max = padded_mels.shape[1]
# Pad labels to T_max
def pad_label(label, out_len):
if label.shape[0] < out_len:
pad = torch.zeros(out_len - label.shape[0], dtype=label.dtype)
return torch.cat([label, pad], dim=0)
else:
return label[:out_len]
don_labels = torch.stack([pad_label(l, T_max) for l in don_labels_list])
ka_labels = torch.stack([pad_label(l, T_max) for l in ka_labels_list])
drumroll_labels = torch.stack([pad_label(l, T_max) for l in drumroll_labels_list])
lengths = torch.tensor(
[min(l.item(), T_max) for l in lengths_list], dtype=torch.long
)
return {
"mel": reshaped_mels,
"don_labels": don_labels,
"ka_labels": ka_labels,
"drumroll_labels": drumroll_labels,
"lengths": lengths, # for conformer
"nps": torch.stack(nps_list),
"difficulty": torch.stack(difficulty_list),
"level": torch.stack(level_list),
"durations": torch.stack(durations_list),
}