Spaces:
Runtime error
Runtime error
File size: 6,560 Bytes
4bc5f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import sys
import time
import subprocess
from cog import BasePredictor, Input, Path
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from insightface.app import FaceAnalysis
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from pipeline_stable_diffusion_xl_instantid import (
StableDiffusionXLInstantIDPipeline,
draw_kps,
)
# for `ip-adaper`, `ControlNetModel`, and `stable-diffusion-xl-base-1.0`
CHECKPOINTS_CACHE = "./checkpoints"
CHECKPOINTS_URL = (
"https://weights.replicate.delivery/default/InstantID/checkpoints.tar"
)
# for `models/antelopev2`
MODELS_CACHE = "./models"
MODELS_URL = "https://weights.replicate.delivery/default/InstantID/models.tar"
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(CHECKPOINTS_CACHE):
download_weights(CHECKPOINTS_URL, CHECKPOINTS_CACHE)
if not os.path.exists(MODELS_CACHE):
download_weights(MODELS_URL, MODELS_CACHE)
self.width, self.height = 640, 640
self.app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.app.prepare(ctx_id=0, det_size=(self.width, self.height))
# Path to InstantID models
face_adapter = f"./checkpoints/ip-adapter.bin"
controlnet_path = f"./checkpoints/ControlNetModel"
# Load pipeline
self.controlnet = ControlNetModel.from_pretrained(
controlnet_path,
torch_dtype=torch.float16,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
)
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=self.controlnet,
torch_dtype=torch.float16,
cache_dir=CHECKPOINTS_CACHE,
local_files_only=True,
)
self.pipe.cuda()
self.pipe.load_ip_adapter_instantid(face_adapter)
def predict(
self,
image: Path = Input(description="Input image"),
prompt: str = Input(
description="Input prompt",
default="analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality",
),
negative_prompt: str = Input(
description="Input Negative Prompt",
default="",
),
width: int = Input(
description="Width of output image",
default=640,
ge=512,
le=2048,
),
height: int = Input(
description="Height of output image",
default=640,
ge=512,
le=2048,
),
ip_adapter_scale: float = Input(
description="Scale for IP adapter",
default=0.8,
ge=0,
le=1,
),
controlnet_conditioning_scale: float = Input(
description="Scale for ControlNet conditioning",
default=0.8,
ge=0,
le=1,
),
num_inference_steps: int = Input(
description="Number of denoising steps",
default=30,
ge=1,
le=500,
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance",
default=5,
ge=1,
le=50,
),
) -> Path:
"""Run a single prediction on the model"""
if self.width != width or self.height != height:
print(f"[!] Resizing output to {width}x{height}")
self.width = width
self.height = height
self.app.prepare(ctx_id=0, det_size=(self.width, self.height))
face_image = load_image(str(image))
face_image = resize_img(face_image)
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]),
reverse=True,
)[
0
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(face_image, face_info["kps"])
self.pipe.set_ip_adapter_scale(ip_adapter_scale)
image = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=face_kps,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
).images[0]
output_path = "result.jpg"
image.save(output_path)
return Path(output_path)
|