Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('./')
|
3 |
+
|
4 |
+
from typing import Tuple
|
5 |
+
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
+
import math
|
9 |
+
import torch
|
10 |
+
import random
|
11 |
+
import numpy as np
|
12 |
+
import argparse
|
13 |
+
|
14 |
+
import PIL
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
import diffusers
|
18 |
+
from diffusers.utils import load_image
|
19 |
+
from diffusers.models import ControlNetModel
|
20 |
+
from diffusers import LCMScheduler
|
21 |
+
|
22 |
+
from huggingface_hub import hf_hub_download
|
23 |
+
|
24 |
+
import insightface
|
25 |
+
from insightface.app import FaceAnalysis
|
26 |
+
|
27 |
+
from style_template import styles
|
28 |
+
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
|
29 |
+
from model_util import load_models_xl, get_torch_device, torch_gc
|
30 |
+
|
31 |
import gradio as gr
|
32 |
|
33 |
+
# global variable
|
34 |
+
MAX_SEED = np.iinfo(np.int32).max
|
35 |
+
device = get_torch_device()
|
36 |
+
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
37 |
+
STYLE_NAMES = list(styles.keys())
|
38 |
+
DEFAULT_STYLE_NAME = "Watercolor"
|
39 |
+
|
40 |
+
# Load face encoder
|
41 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
42 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
43 |
+
|
44 |
+
# Path to InstantID models
|
45 |
+
face_adapter = f'./checkpoints/ip-adapter.bin'
|
46 |
+
controlnet_path = f'./checkpoints/ControlNetModel'
|
47 |
+
|
48 |
+
# Load pipeline
|
49 |
+
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
|
50 |
+
|
51 |
+
def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):
|
52 |
+
|
53 |
+
if pretrained_model_name_or_path.endswith(
|
54 |
+
".ckpt"
|
55 |
+
) or pretrained_model_name_or_path.endswith(".safetensors"):
|
56 |
+
scheduler_kwargs = hf_hub_download(
|
57 |
+
repo_id="wangqixun/YamerMIX_v8",
|
58 |
+
subfolder="scheduler",
|
59 |
+
filename="scheduler_config.json",
|
60 |
+
)
|
61 |
+
|
62 |
+
(tokenizers, text_encoders, unet, _, vae) = load_models_xl(
|
63 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
64 |
+
scheduler_name=None,
|
65 |
+
weight_dtype=dtype,
|
66 |
+
)
|
67 |
+
|
68 |
+
scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
|
69 |
+
pipe = StableDiffusionXLInstantIDPipeline(
|
70 |
+
vae=vae,
|
71 |
+
text_encoder=text_encoders[0],
|
72 |
+
text_encoder_2=text_encoders[1],
|
73 |
+
tokenizer=tokenizers[0],
|
74 |
+
tokenizer_2=tokenizers[1],
|
75 |
+
unet=unet,
|
76 |
+
scheduler=scheduler,
|
77 |
+
controlnet=controlnet,
|
78 |
+
).to(device)
|
79 |
+
|
80 |
+
else:
|
81 |
+
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
82 |
+
pretrained_model_name_or_path,
|
83 |
+
controlnet=controlnet,
|
84 |
+
torch_dtype=dtype,
|
85 |
+
safety_checker=None,
|
86 |
+
feature_extractor=None,
|
87 |
+
).to(device)
|
88 |
+
|
89 |
+
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
90 |
+
|
91 |
+
pipe.load_ip_adapter_instantid(face_adapter)
|
92 |
+
# load and disable LCM
|
93 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
94 |
+
pipe.disable_lora()
|
95 |
+
def toggle_lcm_ui(value):
|
96 |
+
if value:
|
97 |
+
return (
|
98 |
+
gr.update(minimum=0, maximum=100, step=1, value=5),
|
99 |
+
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5)
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
return (
|
103 |
+
gr.update(minimum=5, maximum=100, step=1, value=30),
|
104 |
+
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5)
|
105 |
+
)
|
106 |
+
|
107 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
108 |
+
if randomize_seed:
|
109 |
+
seed = random.randint(0, MAX_SEED)
|
110 |
+
return seed
|
111 |
+
|
112 |
+
def remove_tips():
|
113 |
+
return gr.update(visible=False)
|
114 |
+
|
115 |
+
def get_example():
|
116 |
+
case = [
|
117 |
+
[
|
118 |
+
'./examples/yann-lecun_resize.jpg',
|
119 |
+
"a man",
|
120 |
+
"Snow",
|
121 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
122 |
+
],
|
123 |
+
[
|
124 |
+
'./examples/musk_resize.jpeg',
|
125 |
+
"a man",
|
126 |
+
"Mars",
|
127 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
128 |
+
],
|
129 |
+
[
|
130 |
+
'./examples/sam_resize.png',
|
131 |
+
"a man",
|
132 |
+
"Jungle",
|
133 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
134 |
+
],
|
135 |
+
[
|
136 |
+
'./examples/schmidhuber_resize.png',
|
137 |
+
"a man",
|
138 |
+
"Neon",
|
139 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
140 |
+
],
|
141 |
+
[
|
142 |
+
'./examples/kaifu_resize.png',
|
143 |
+
"a man",
|
144 |
+
"Vibrant Color",
|
145 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
146 |
+
],
|
147 |
+
]
|
148 |
+
return case
|
149 |
+
|
150 |
+
def run_for_examples(face_file, prompt, style, negative_prompt):
|
151 |
+
return generate_image(face_file, None, prompt, negative_prompt, style, 30, 0.8, 0.8, 5, 42, False, True)
|
152 |
+
|
153 |
+
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
154 |
+
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
155 |
+
|
156 |
+
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
157 |
+
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
158 |
+
|
159 |
+
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
|
160 |
+
stickwidth = 4
|
161 |
+
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
162 |
+
kps = np.array(kps)
|
163 |
+
|
164 |
+
w, h = image_pil.size
|
165 |
+
out_img = np.zeros([h, w, 3])
|
166 |
+
|
167 |
+
for i in range(len(limbSeq)):
|
168 |
+
index = limbSeq[i]
|
169 |
+
color = color_list[index[0]]
|
170 |
+
|
171 |
+
x = kps[index][:, 0]
|
172 |
+
y = kps[index][:, 1]
|
173 |
+
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
174 |
+
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
175 |
+
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
176 |
+
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
177 |
+
out_img = (out_img * 0.6).astype(np.uint8)
|
178 |
+
|
179 |
+
for idx_kp, kp in enumerate(kps):
|
180 |
+
color = color_list[idx_kp]
|
181 |
+
x, y = kp
|
182 |
+
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
183 |
+
|
184 |
+
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
185 |
+
return out_img_pil
|
186 |
+
|
187 |
+
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
188 |
+
pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):
|
189 |
+
|
190 |
+
w, h = input_image.size
|
191 |
+
if size is not None:
|
192 |
+
w_resize_new, h_resize_new = size
|
193 |
+
else:
|
194 |
+
ratio = min_side / min(h, w)
|
195 |
+
w, h = round(ratio*w), round(ratio*h)
|
196 |
+
ratio = max_side / max(h, w)
|
197 |
+
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
198 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
199 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
200 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
201 |
+
|
202 |
+
if pad_to_max_side:
|
203 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
204 |
+
offset_x = (max_side - w_resize_new) // 2
|
205 |
+
offset_y = (max_side - h_resize_new) // 2
|
206 |
+
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
207 |
+
input_image = Image.fromarray(res)
|
208 |
+
return input_image
|
209 |
+
|
210 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
211 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
212 |
+
return p.replace("{prompt}", positive), n + ' ' + negative
|
213 |
+
|
214 |
+
def generate_image(face_image_path, pose_image_path, prompt, negative_prompt, style_name, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, enable_LCM, enhance_face_region, progress=gr.Progress(track_tqdm=True)):
|
215 |
+
if enable_LCM:
|
216 |
+
pipe.enable_lora()
|
217 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
218 |
+
else:
|
219 |
+
pipe.disable_lora()
|
220 |
+
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
221 |
+
|
222 |
+
if face_image_path is None:
|
223 |
+
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
|
224 |
+
|
225 |
+
if prompt is None:
|
226 |
+
prompt = "a person"
|
227 |
+
|
228 |
+
# apply the style template
|
229 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
230 |
+
|
231 |
+
face_image = load_image(face_image_path)
|
232 |
+
face_image = resize_img(face_image)
|
233 |
+
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
234 |
+
height, width, _ = face_image_cv2.shape
|
235 |
+
|
236 |
+
# Extract face features
|
237 |
+
face_info = app.get(face_image_cv2)
|
238 |
+
|
239 |
+
if len(face_info) == 0:
|
240 |
+
raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
|
241 |
+
|
242 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
243 |
+
face_emb = face_info['embedding']
|
244 |
+
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
|
245 |
+
|
246 |
+
if pose_image_path is not None:
|
247 |
+
pose_image = load_image(pose_image_path)
|
248 |
+
pose_image = resize_img(pose_image)
|
249 |
+
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
250 |
+
|
251 |
+
face_info = app.get(pose_image_cv2)
|
252 |
+
|
253 |
+
if len(face_info) == 0:
|
254 |
+
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
|
255 |
+
|
256 |
+
face_info = face_info[-1]
|
257 |
+
face_kps = draw_kps(pose_image, face_info['kps'])
|
258 |
+
|
259 |
+
width, height = face_kps.size
|
260 |
+
|
261 |
+
if enhance_face_region:
|
262 |
+
control_mask = np.zeros([height, width, 3])
|
263 |
+
x1, y1, x2, y2 = face_info["bbox"]
|
264 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
265 |
+
control_mask[y1:y2, x1:x2] = 255
|
266 |
+
control_mask = Image.fromarray(control_mask.astype(np.uint8))
|
267 |
+
else:
|
268 |
+
control_mask = None
|
269 |
+
|
270 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
271 |
+
|
272 |
+
print("Start inference...")
|
273 |
+
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
274 |
+
|
275 |
+
pipe.set_ip_adapter_scale(adapter_strength_ratio)
|
276 |
+
images = pipe(
|
277 |
+
prompt=prompt,
|
278 |
+
negative_prompt=negative_prompt,
|
279 |
+
image_embeds=face_emb,
|
280 |
+
image=face_kps,
|
281 |
+
control_mask=control_mask,
|
282 |
+
controlnet_conditioning_scale=float(identitynet_strength_ratio),
|
283 |
+
num_inference_steps=num_steps,
|
284 |
+
guidance_scale=guidance_scale,
|
285 |
+
height=height,
|
286 |
+
width=width,
|
287 |
+
generator=generator
|
288 |
+
).images
|
289 |
+
|
290 |
+
return images[0], gr.update(visible=True)
|
291 |
+
|
292 |
+
### Description
|
293 |
+
title = r"""
|
294 |
+
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
|
295 |
+
"""
|
296 |
+
|
297 |
+
description = r"""
|
298 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
|
299 |
+
|
300 |
+
How to use:<br>
|
301 |
+
1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
|
302 |
+
2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
|
303 |
+
3. Enter a text prompt, as done in normal text-to-image models.
|
304 |
+
4. Click the <b>Submit</b> button to begin customization.
|
305 |
+
5. Share your customized photo with your friends and enjoy! 😊
|
306 |
+
"""
|
307 |
+
|
308 |
+
article = r"""
|
309 |
+
---
|
310 |
+
📝 **Citation**
|
311 |
+
<br>
|
312 |
+
If our work is helpful for your research or applications, please cite us via:
|
313 |
+
```bibtex
|
314 |
+
@article{wang2024instantid,
|
315 |
+
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
|
316 |
+
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
|
317 |
+
journal={arXiv preprint arXiv:2401.07519},
|
318 |
+
year={2024}
|
319 |
+
}
|
320 |
+
```
|
321 |
+
📧 **Contact**
|
322 |
+
<br>
|
323 |
+
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
|
324 |
+
"""
|
325 |
+
|
326 |
+
tips = r"""
|
327 |
+
### Usage tips of InstantID
|
328 |
+
1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."
|
329 |
+
2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
|
330 |
+
3. If you find that text control is not as expected, decrease Adapter strength.
|
331 |
+
4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
|
332 |
+
"""
|
333 |
+
|
334 |
+
css = '''
|
335 |
+
.gradio-container {width: 85% !important}
|
336 |
+
'''
|
337 |
+
with gr.Blocks(css=css) as demo:
|
338 |
+
|
339 |
+
# description
|
340 |
+
gr.Markdown(title)
|
341 |
+
gr.Markdown(description)
|
342 |
+
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column():
|
345 |
+
|
346 |
+
# upload face image
|
347 |
+
face_file = gr.Image(label="Upload a photo of your face", type="filepath")
|
348 |
+
|
349 |
+
# optional: upload a reference pose image
|
350 |
+
pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath")
|
351 |
+
|
352 |
+
# prompt
|
353 |
+
prompt = gr.Textbox(label="Prompt",
|
354 |
+
info="Give simple prompt is enough to achieve good face fidelity",
|
355 |
+
placeholder="A photo of a person",
|
356 |
+
value="")
|
357 |
+
|
358 |
+
submit = gr.Button("Submit", variant="primary")
|
359 |
+
|
360 |
+
enable_LCM = gr.Checkbox(
|
361 |
+
label="Enable Fast Inference with LCM", value=enable_lcm_arg,
|
362 |
+
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
|
363 |
+
)
|
364 |
+
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
365 |
+
|
366 |
+
# strength
|
367 |
+
identitynet_strength_ratio = gr.Slider(
|
368 |
+
label="IdentityNet strength (for fidelity)",
|
369 |
+
minimum=0,
|
370 |
+
maximum=1.5,
|
371 |
+
step=0.05,
|
372 |
+
value=0.80,
|
373 |
+
)
|
374 |
+
adapter_strength_ratio = gr.Slider(
|
375 |
+
label="Image adapter strength (for detail)",
|
376 |
+
minimum=0,
|
377 |
+
maximum=1.5,
|
378 |
+
step=0.05,
|
379 |
+
value=0.80,
|
380 |
+
)
|
381 |
+
|
382 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
383 |
+
negative_prompt = gr.Textbox(
|
384 |
+
label="Negative Prompt",
|
385 |
+
placeholder="low quality",
|
386 |
+
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
387 |
+
)
|
388 |
+
num_steps = gr.Slider(
|
389 |
+
label="Number of sample steps",
|
390 |
+
minimum=20,
|
391 |
+
maximum=100,
|
392 |
+
step=1,
|
393 |
+
value=5 if enable_lcm_arg else 30,
|
394 |
+
)
|
395 |
+
guidance_scale = gr.Slider(
|
396 |
+
label="Guidance scale",
|
397 |
+
minimum=0.1,
|
398 |
+
maximum=10.0,
|
399 |
+
step=0.1,
|
400 |
+
value=0 if enable_lcm_arg else 5,
|
401 |
+
)
|
402 |
+
seed = gr.Slider(
|
403 |
+
label="Seed",
|
404 |
+
minimum=0,
|
405 |
+
maximum=MAX_SEED,
|
406 |
+
step=1,
|
407 |
+
value=42,
|
408 |
+
)
|
409 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
410 |
+
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
|
411 |
+
|
412 |
+
with gr.Column():
|
413 |
+
gallery = gr.Image(label="Generated Images")
|
414 |
+
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
|
415 |
+
|
416 |
+
submit.click(
|
417 |
+
fn=remove_tips,
|
418 |
+
outputs=usage_tips,
|
419 |
+
).then(
|
420 |
+
fn=randomize_seed_fn,
|
421 |
+
inputs=[seed, randomize_seed],
|
422 |
+
outputs=seed,
|
423 |
+
queue=False,
|
424 |
+
api_name=False,
|
425 |
+
).then(
|
426 |
+
fn=generate_image,
|
427 |
+
inputs=[face_file, pose_file, prompt, negative_prompt, style, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, enable_LCM, enhance_face_region],
|
428 |
+
outputs=[gallery, usage_tips]
|
429 |
+
)
|
430 |
+
|
431 |
+
enable_LCM.input(fn=toggle_lcm_ui, inputs=[enable_LCM], outputs=[num_steps, guidance_scale], queue=False)
|
432 |
+
|
433 |
+
gr.Examples(
|
434 |
+
examples=get_example(),
|
435 |
+
inputs=[face_file, prompt, style, negative_prompt],
|
436 |
+
run_on_click=True,
|
437 |
+
fn=run_for_examples,
|
438 |
+
outputs=[gallery, usage_tips],
|
439 |
+
cache_examples=True,
|
440 |
+
)
|
441 |
+
|
442 |
+
gr.Markdown(article)
|
443 |
+
|
444 |
+
demo.launch()
|
445 |
+
|
446 |
+
if __name__ == "__main__":
|
447 |
+
parser = argparse.ArgumentParser()
|
448 |
+
parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
|
449 |
+
parser.add_argument("--enable_LCM", type=bool, default=os.environ.get("ENABLE_LCM", False))
|
450 |
+
|
451 |
+
args = parser.parse_args()
|
452 |
+
|
453 |
+
main(args.pretrained_model_name_or_path, args.enable_LCM)
|