from typing import List, Sequence, Tuple, Optional, Dict, Union, Callable
import spacy
from spacy import displacy
from spacy.language import Language
import streamlit as st
from spacy_streamlit import visualize_parser
import base64
from PIL import Image
import deplacy
import graphviz
st.set_page_config(layout="wide")
st.title("Ancient Greek Analyzer")
st.markdown("Here you'll find four spaCy models for processing ancient Greek. They have been trained with the Universal Dependencies datasets *Perseus* and *Proiel*. We provide two types of models for each dataset. The '_lg' models were built with tok2vec pretrained embeddings and fasttext vectors, while the '_tfr' models have a transfomers layer. You can choose among models to compare their performance. More information about the models can be found in the [Huggingface Models Hub] (https://huggingface.co/Jacobo).")
st.sidebar.image("logo.png", use_column_width=False, width=150, caption="\n provided by Diogenet")
st.sidebar.title("Choose model:")
spacy_model = st.sidebar.selectbox("", ["grc_ud_perseus_lg", "grc_ud_proiel_lg"])
st.header("Text to analyze:")
text = st.text_area("", "Πλάτων ὁ Περικτιόνης τὸ γένος ἀνέφερεν εἰς Σόλωνα.")
nlp = spacy.load(spacy_model)
doc = nlp(text)
def get_html(html: str):
"""Convert HTML so it can be rendered."""
WRAPPER = """
{}
"""
# Newlines seem to mess with the rendering
html = html.replace("\n", " ")
return WRAPPER.format(html)
def get_svg(svg: str, style: str = "", wrap: bool = True):
"""Convert an SVG to a base64-encoded image."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = f''
return get_html(html) if wrap else html
def visualize_parser(
doc: spacy.tokens.Doc,
*,
title: Optional[str] = "Dependency parse & part of speech",
key: Optional[str] = None,
) -> None:
"""Visualizer for dependency parses."""
if title:
st.header(title)
cols = st.columns(4)
split_sents = cols[0].checkbox(
"Split sentences", value=True, key=f"{key}_parser_split_sents"
)
options = {
"collapse_punct": cols[1].checkbox(
"Collapse punct", value=True, key=f"{key}_parser_collapse_punct"
),
"compact": cols[3].checkbox("Compact mode", value=True, key=f"{key}_parser_compact"),
}
docs = [span.as_doc() for span in doc.sents] if split_sents else [doc]
for sent in docs:
html = displacy.render(sent, options=options, style="dep")
# Double newlines seem to mess with the rendering
html = html.replace("\n\n", "\n")
if split_sents and len(docs) > 1:
st.markdown(f"> {sent.text}")
st.write(get_svg(html), unsafe_allow_html=True)
visualize_parser(doc)
#graph_r = deplacy.render(doc)
#st.graphviz_chart(graph_r)
graph_dot = deplacy.dot(doc)
#graphviz.Source(deplacy.dot(doc))
st.graphviz_chart(graph_dot)
#st.sidebar.title("Model 2")
#spacy_model2 = st.sidebar.selectbox("Model 2", ["grc_ud_perseus_lg", "grc_ud_proiel_lg"])
#st.header("Text to analyze:")
#text = st.text_area("", "Πλάτων ὁ Περικτιόνης τὸ γένος ἀνέφερεν εἰς Σόλωνα.")
#nlp = spacy.load(spacy_model2)
#doc2 = nlp(text)
#visualize_parser(doc2)
#visualizers = ["pos", "dep"]
#spacy_streamlit.visualize(models, default_text,visualizers)