File size: 88,879 Bytes
8de2f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6412367a-68a3-4c35-a9cd-44db9c17dafa",
   "metadata": {},
   "outputs": [],
   "source": [
    "from fastai.vision.all import *"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "id": "a2573076-ba96-497d-adbd-e27f791c43b2",
   "metadata": {},
   "outputs": [],
   "source": [
    "#| default_exp app"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "a8dfd72f-5686-448e-8442-c8bde6b9cf03",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
      "Collecting gradio\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/50/70/ed0ba0fb5c3b1cb2e481717ad190056a4c9a0ef2f296b871e10375b2ab83/gradio-3.35.2-py3-none-any.whl (19.7 MB)\n",
      "Collecting semantic-version\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/6a/23/8146aad7d88f4fcb3a6218f41a60f6c2d4e3a72de72da1825dc7c8f7877c/semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
      "Requirement already satisfied: pandas in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (1.5.3)\n",
      "Requirement already satisfied: pydantic in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (1.10.10)\n",
      "Collecting orjson\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/55/d1/03769e06ac4b76cdf2caf33cb6097f690f621c9903d772b5c11abcdc2bbf/orjson-3.9.1-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl (240 kB)\n",
      "Collecting aiofiles\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a8/76/635aa4f210d46ca105bfedd42d41f649b91d3e58422912726fc5e7965442/aiofiles-23.1.0-py3-none-any.whl (14 kB)\n",
      "Collecting pygments>=2.12.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/34/a7/37c8d68532ba71549db4212cb036dbd6161b40e463aba336770e80c72f84/Pygments-2.15.1-py3-none-any.whl (1.1 MB)\n",
      "Requirement already satisfied: matplotlib in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (3.7.0)\n",
      "Collecting mdit-py-plugins<=0.3.3\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/33/eb/c358112e8265f827cf8228eda36cf2a720ad933f5ca66f47f808edf4bb34/mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n",
      "Collecting fastapi\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/73/eb/03b691afa0b5ffa1e93ed34f97ec1e7855c758efbdcfb16c209af0b0506b/fastapi-0.99.1-py3-none-any.whl (58 kB)\n",
      "Requirement already satisfied: markupsafe in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (2.1.1)\n",
      "Requirement already satisfied: requests in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (2.28.1)\n",
      "Requirement already satisfied: huggingface-hub>=0.14.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (0.15.1)\n",
      "Requirement already satisfied: jinja2 in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (3.1.2)\n",
      "Collecting pydub\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/a6/53/d78dc063216e62fc55f6b2eebb447f6a4b0a59f55c8406376f76bf959b08/pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
      "Collecting httpx\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ec/91/e41f64f03d2a13aee7e8c819d82ee3aa7cdc484d18c0ae859742597d5aa0/httpx-0.24.1-py3-none-any.whl (75 kB)\n",
      "Collecting python-multipart\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b4/ff/b1e11d8bffb5e0e1b6d27f402eeedbeb9be6df2cdbc09356a1ae49806dbf/python_multipart-0.0.6-py3-none-any.whl (45 kB)\n",
      "Collecting markdown-it-py[linkify]>=2.0.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n",
      "Requirement already satisfied: numpy in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (1.23.5)\n",
      "Collecting ffmpy\n",
      "  Using cached ffmpy-0.3.0-py3-none-any.whl\n",
      "Collecting gradio-client>=0.2.7\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d8/e9/a45a653b6ef112d475f26a8a62d82fba8b3cfd77247ffd70cf5d54b6f1cb/gradio_client-0.2.7-py3-none-any.whl (288 kB)\n",
      "Requirement already satisfied: aiohttp in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (3.8.4)\n",
      "Requirement already satisfied: pillow in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (9.4.0)\n",
      "Collecting altair>=4.2.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b2/20/5c3b89d6f8d9938325a9330793438389e0dc94c34d921f6da35ec62095f3/altair-5.0.1-py3-none-any.whl (471 kB)\n",
      "Collecting websockets>=10.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b9/6b/26b28115b46e23e74ede76d95792eedfe8c58b21f4daabfff1e9f159c8fe/websockets-11.0.3-cp310-cp310-macosx_10_9_x86_64.whl (120 kB)\n",
      "Requirement already satisfied: pyyaml in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio) (6.0)\n",
      "Collecting uvicorn>=0.14.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ad/bd/d47ee02312640fcf26c7e1c807402d5c5eab468571153a94ec8f7ada0e46/uvicorn-0.22.0-py3-none-any.whl (58 kB)\n",
      "Requirement already satisfied: jsonschema>=3.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from altair>=4.2.0->gradio) (4.17.3)\n",
      "Requirement already satisfied: typing-extensions>=4.0.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from altair>=4.2.0->gradio) (4.4.0)\n",
      "Requirement already satisfied: toolz in /Users/qian/anaconda3/lib/python3.10/site-packages (from altair>=4.2.0->gradio) (0.12.0)\n",
      "Requirement already satisfied: fsspec in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio-client>=0.2.7->gradio) (2022.11.0)\n",
      "Requirement already satisfied: packaging in /Users/qian/anaconda3/lib/python3.10/site-packages (from gradio-client>=0.2.7->gradio) (22.0)\n",
      "Requirement already satisfied: filelock in /Users/qian/anaconda3/lib/python3.10/site-packages (from huggingface-hub>=0.14.0->gradio) (3.9.0)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from huggingface-hub>=0.14.0->gradio) (4.64.1)\n",
      "Collecting mdurl~=0.1\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n",
      "Collecting linkify-it-py<3,>=1\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/1f/1a/16b0d2f66601ba3081f1d4177087c79fd1f11d17706ee01d373e4ba8e00d/linkify_it_py-2.0.2-py3-none-any.whl (19 kB)\n",
      "Collecting mdit-py-plugins<=0.3.3\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e4/92/268849737427f7f9a128d2586e561a7dfac723c02f3aaaaef4d27dd6829c/mdit_py_plugins-0.3.2-py3-none-any.whl (50 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/de/d9/20870f611989b8dcfd2395eddefdd4b1983d6c36513cce7fbbe9eb345768/mdit_py_plugins-0.3.1-py3-none-any.whl (46 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5b/c4/1cf60e11b55197fa2e5e8d2f732a229690f5a08b018ae1cf4c00585ca834/mdit_py_plugins-0.3.0-py3-none-any.whl (43 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/c0/cb/782222da2cc3d543aee662c33cbaf611ec010146ca21c91d5743e8d99603/mdit_py_plugins-0.2.8-py3-none-any.whl (41 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/58/04/d5538523c5aae983c6057e6feba23dccb1da39d022264d7dacac1bfc4cd6/mdit_py_plugins-0.2.7-py3-none-any.whl (41 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/0c/31/f0ecaccf7cd2db17332a94852f190840167c3cb7eadf09efe498412f909a/mdit_py_plugins-0.2.6-py3-none-any.whl (39 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/66/62/fae9ee5766a7153d571ad732ef514c552efeaa31735fd60e6d9bc07fa9e4/mdit_py_plugins-0.2.5-py3-none-any.whl (39 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/9d/df/16e87ebd0bb9d946d3b2d39c1171398f7f71eef5d9ca85adb94131b8c7b5/mdit_py_plugins-0.2.4-py3-none-any.whl (39 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/97/23/3e017136aefe61b442fee2869fcc7756c814e3cfe551f225e1e085f27217/mdit_py_plugins-0.2.3-py3-none-any.whl (39 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/40/fe/0f06e8545ac0578741342cc00305b8d955863b72755af0c3771f339099fb/mdit_py_plugins-0.2.2-py3-none-any.whl (39 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/64/f2/b477dfb13e6d3db6421cf61cd7b76562f16141e81cb174d837dda519253b/mdit_py_plugins-0.2.1-py3-none-any.whl (38 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/5b/78/e3b8c43edce725d01021d5b2947dc6d425ee5201cece4bc3d6a757720151/mdit_py_plugins-0.2.0-py3-none-any.whl (38 kB)\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/00/02/280276967a2328199700b5e16bf427c4b4af1c54fdd6a00623ef93ed25c2/mdit_py_plugins-0.1.0-py3-none-any.whl (37 kB)\n",
      "INFO: pip is looking at multiple versions of markdown-it-py[linkify] to determine which version is compatible with other requirements. This could take a while.\n",
      "Collecting markdown-it-py[linkify]>=2.0.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/bf/25/2d88e8feee8e055d015343f9b86e370a1ccbec546f2865c98397aaef24af/markdown_it_py-2.2.0-py3-none-any.whl (84 kB)\n",
      "Requirement already satisfied: python-dateutil>=2.8.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from pandas->gradio) (2.8.2)\n",
      "Requirement already satisfied: pytz>=2020.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from pandas->gradio) (2022.7)\n",
      "Collecting h11>=0.8\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl (58 kB)\n",
      "Requirement already satisfied: click>=7.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from uvicorn>=0.14.0->gradio) (8.0.4)\n",
      "Requirement already satisfied: frozenlist>=1.1.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (1.3.3)\n",
      "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (4.0.2)\n",
      "Requirement already satisfied: aiosignal>=1.1.2 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (1.3.1)\n",
      "Requirement already satisfied: multidict<7.0,>=4.5 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (6.0.4)\n",
      "Requirement already satisfied: attrs>=17.3.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (22.1.0)\n",
      "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (2.0.4)\n",
      "Requirement already satisfied: yarl<2.0,>=1.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from aiohttp->gradio) (1.9.2)\n",
      "Collecting typing-extensions>=4.0.1\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/ec/6b/63cc3df74987c36fe26157ee12e09e8f9db4de771e0f3404263117e75b95/typing_extensions-4.7.1-py3-none-any.whl (33 kB)\n",
      "Collecting starlette<0.28.0,>=0.27.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/58/f8/e2cca22387965584a409795913b774235752be4176d276714e15e1a58884/starlette-0.27.0-py3-none-any.whl (66 kB)\n",
      "Requirement already satisfied: idna in /Users/qian/anaconda3/lib/python3.10/site-packages (from httpx->gradio) (3.4)\n",
      "Requirement already satisfied: certifi in /Users/qian/anaconda3/lib/python3.10/site-packages (from httpx->gradio) (2022.12.7)\n",
      "Collecting httpcore<0.18.0,>=0.15.0\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/4d/32/b908f673ccef12b6425b848a541264ee3d95f5f571f18f6ab0d8c311442e/httpcore-0.17.2-py3-none-any.whl (72 kB)\n",
      "Requirement already satisfied: sniffio in /Users/qian/anaconda3/lib/python3.10/site-packages (from httpx->gradio) (1.2.0)\n",
      "Requirement already satisfied: contourpy>=1.0.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from matplotlib->gradio) (1.0.5)\n",
      "Requirement already satisfied: cycler>=0.10 in /Users/qian/anaconda3/lib/python3.10/site-packages (from matplotlib->gradio) (0.11.0)\n",
      "Requirement already satisfied: fonttools>=4.22.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from matplotlib->gradio) (4.25.0)\n",
      "Requirement already satisfied: pyparsing>=2.3.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from matplotlib->gradio) (3.0.9)\n",
      "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from matplotlib->gradio) (1.4.4)\n",
      "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/qian/anaconda3/lib/python3.10/site-packages (from requests->gradio) (1.26.14)\n",
      "Requirement already satisfied: anyio<5.0,>=3.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from httpcore<0.18.0,>=0.15.0->httpx->gradio) (3.5.0)\n",
      "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.18.0)\n",
      "Collecting uc-micro-py\n",
      "  Using cached https://pypi.tuna.tsinghua.edu.cn/packages/d1/1c/5aeb94aa980da111e4fd0c0fbe5ad95ed5bf9bd957f8e2a6178b85ff4da8/uc_micro_py-1.0.2-py3-none-any.whl (6.2 kB)\n",
      "Requirement already satisfied: six>=1.5 in /Users/qian/anaconda3/lib/python3.10/site-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n",
      "Installing collected packages: pydub, ffmpy, websockets, uc-micro-py, typing-extensions, semantic-version, python-multipart, pygments, orjson, mdurl, h11, aiofiles, uvicorn, starlette, markdown-it-py, linkify-it-py, httpcore, mdit-py-plugins, httpx, fastapi, altair, gradio-client, gradio\n",
      "  Attempting uninstall: typing-extensions\n",
      "    Found existing installation: typing_extensions 4.4.0\n",
      "    Uninstalling typing_extensions-4.4.0:\n",
      "      Successfully uninstalled typing_extensions-4.4.0\n",
      "  Attempting uninstall: pygments\n",
      "    Found existing installation: Pygments 2.11.2\n",
      "    Uninstalling Pygments-2.11.2:\n",
      "      Successfully uninstalled Pygments-2.11.2\n",
      "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
      "spyder 5.4.1 requires pyqt5<5.16, which is not installed.\n",
      "spyder 5.4.1 requires pyqtwebengine<5.16, which is not installed.\u001b[0m\u001b[31m\n",
      "\u001b[0mSuccessfully installed aiofiles-23.1.0 altair-5.0.1 fastapi-0.99.1 ffmpy-0.3.0 gradio-3.35.2 gradio-client-0.2.7 h11-0.14.0 httpcore-0.17.2 httpx-0.24.1 linkify-it-py-2.0.2 markdown-it-py-2.2.0 mdit-py-plugins-0.3.3 mdurl-0.1.2 orjson-3.9.1 pydub-0.25.1 pygments-2.15.1 python-multipart-0.0.6 semantic-version-2.10.0 starlette-0.27.0 typing-extensions-4.7.1 uc-micro-py-1.0.2 uvicorn-0.22.0 websockets-11.0.3\n"
     ]
    }
   ],
   "source": [
    "!pip install gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "7517e072-5371-484a-a531-dd93fc6a59dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "import gradio as gr\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "266f5ae6-099c-496a-ac60-8ec7e197f2cf",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def greet(name):\n",
    "    return \"Hello \" + name + \"!\"\n",
    "\n",
    "demo = gr.Interface(fn=greet, inputs=\"text\", outputs=\"text\")\n",
    "\n",
    "demo.launch()   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ec8fd680-af15-41a6-8a2c-1ae3d5fbc046",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAAB4CAIAAAArJ2pIAACI9klEQVR4nMz955MtSZYnhp1z3D3UVZk3xct8sqpe6Wo5LaZ75M7u7C53doyAUQEgjUYSZjQD8ZXf8D/wK/kNZvxAwoykGQgDdrELMTPYWYzomZ7Woqq6nn4vdeZVoVycww8ecTOfqKqe2eHuRr+uvDduhIeH+/Fzfkc6fvjxfQBARAAgxPgBAAQBkAQBAFD6cwQIDAAACHB58frDc1/xxfMAgEjw1zxIXvxw5YkCKADxHwK8+Li/2SEiL595+eRn3Bi798q7PuPM5eD3Z36ZhzLz1cskcNs0zjkiSpKElJIXRkUIAKyzAKCVZmEAbtu2bVsiyvPcOeeDM0o5a89OTlerlTAzsveembXWiLiaL1rnBEF/bv9edfztzNPf6vFvV5d+mYn/W3wKIn7aE0WYBYjo8mKAEIKzLo4ZIopwpHVmds41TSPCKqM4qszsvVea8jx33jdNU5Wlb63nwCKfT0D4XMf+Nhf63+rxb1eX/jUQ0Jq9iQj2oqM70/0ozOyDZ2ZSCgQAAJEQvYiwBBAQUYhorY0cCABYQmtbEVaKfGvLugrsSaEPXlpmAK0UEQURAZAXCEii5OoPjNSDDM+d+7fgQIbnhOOn9upvNpHM/LnXvLLl9aReld2f24eXJdfnPlcERDh+DSEopRQgACB0dMLCzCFYLyACDAEAUAQQkIgAMQQXW0rShJmDD861ImxdHUJAJBFZLhZVXQICsAgzilZa5+MhKmqdhYAvEtArO9z36blXfsW5f8PHv0VdYmYiusoS/rYOEfbeS49AATACoEi2UZAF5hCC8w4o8gjBToggACECM4mIdVZEmI3SiAiBfWtbZgZgYUFU3vu2bQVBJHhrRTAQqxACh7KuI+xi5uc5EL6wlgVRUADwhcnpAey/PcfzaP/Vl3wKb3gZ6f8rdUQkTqpS6nOvjB8+rQMvEZ+E4Jx3wkKKCBUARvklIhzXkEhgFhYAFBZAYQ6xeRFAFEQkgsCBOQBACN5aKyIheO998AFJCEmEmVlpRY68cyICAiGEEEJr29bZKMEQUWOvgEVNhkEoigeUSDeC/BLu4Uj+n/3+nzIoL0qHV+pleIUYqHvclS6I6jWv9Q38qhGPT3xOFVojhrWc+mUUpSu9fcXLXlWaIgF9LvW8fPuLOOa5PrAIsHAIzIGZWQQCBFIKAZhFaS1IgCIgACzEgALCzHwVXosEAGSGeCYiIWtb70Nr2+B9YI+CjB1X884zMwuyYOwTgrAAkULyHIQMvSjCXkUL/3bgnn+1I87repLWJ+GvvQA+55b1g9ZS7LObWrcWKXv9UwQ3iIQIAAwIIizCLMF7D+BYRJHSSguIgOgoinoE3bUvEoRfFBXCgAAgzAwgPnhrXdu23jsWxnUrAIGDMDOzrNdG5G8iwhyCR0It/doWAEBAuQpP17Lz3+Txik7g8+znlzhCCFcZw6tW+ZUnfrpweelGufotDrIIhyAAopRCfJGMPq3xF2w/IuK966lKlCbvvXOWQ/DBiogwiNJRNogTYVFKEZHnEEIQEWZhYYHnCGjdeCR0ZmGWtm28d53tDwAAO3HI3XH1rv4du4Wk4eoMiQBcpaC/ttHvb3CshdpVWXZVHyShrouyNhv+UjS9ft0XPgN0dpGrBPQZpr8XJEuEj50u1F2w7qAE9sxeAFgCs1JKE6n4uM/mW5c9Be4pMXDoRLMPwBystRElA0Rg6kMARGQAESMgxBR8R0AvtN9/ABGIRMHMICB82bE1MunkH3Ngjj2PEh8RCSiSZGS0mvE5gPMpIuxfH15+5cMi1dDlt/W1V675FCjzwpqLkmVNT/HzC3JNOoRIL/GIfuFK6Nel4Loj0i3awB4AhImJAwdFOvKG+AYvU9JaYIkIApAGAWAOzEGAASB0D+QQgkgQiFcSMzB7pRQi+uABJCA677hjLqETRevRkA7ddKobS4f4Of4BRAgcqTa+CEe66S+WvjmMHwSeV+PxRaVdAKjXzf510FDEzi+a3l911ctnX8k8rnKg9Rq6ZMTMAEDUUeaa03Bc5QKdyFtzdBFE9N4LBwEAQYEQ7yXpVJC4cDs+zsLEQhLYK6WUUnGMpQfy8YksHkQC++ADIhITIlrb+uBi43zlEOHutYAv3TmECMGyR8QQArMP3Jn6ABgAmEVAgFE6JBXFW2D2cqm4CXNHx3ExQG8vcCH44KW/USA450QECTUKYMQ+kVwxLnXsp0o+l3rkkpM/ZxDDXp5+7hGfgNDbLV5sv2OtcmnPuBQfz7XzHHxbe4i6FR4J4AWSWnOg/iQLhG71izAHQAQQ7CikRyfBCwsSInez1D0pdoxZpKdzweABFUoQ0UKkAMSHoEgRISBKv8qDD847ESEEQAwhiHTqp7Awh+i0gqgMAUQdHoCDBGDsPJkAkf1IZyiWaD8EAGBgAAYREO56GdFxXBs9OwIR7N5BUISAQ+hoN8pUCSAMCggJEfSV2Yo09PKM/2viPbCei0954Mvs5TMalF54xza5d/dEKopCPc5clGuR2Yiw944Di4R4AwIhAZECAaROTEUaQkYFCJGlRRpH5J7bd/oIoggSoxCwIHDnWhLFkfPFOUPEKDFEOPSgMNI3AHSS67n3XWvnEcxGKInSv3hPPZEKpF9P3QBwB+M6NtyD7ohthCPBhhD763z0eolcLhYkiguJ9ZV5EUBYm4H+TR2vFGFxqV2Fap9pMuxuYWHgS5nFIsABI79lDsHH83HyotIUR84H109A7BCBSOCAgr08CQIsjJ10j0zyFXq7MAOA5wAaNQEGZmtdCEGx0tqAiLUWSYwxPrjI9uJz+XIBAF/KoxclNUsEsRB9WwCwXinSscGrchy4p6A4QoFDCB1m7wctnmcWBkHoB6GXeh1fjwJNJOg1Tb1sb/5XPORVHOLVhji4tEq++EskqBf09k/v53ogRMB7BokQJ0IHZkEUII6+nQ4IR1gdgu/leJQRcUljJDhAkG56uYPRggD9pAFI5P3M0EOrbk46wQLeexAQkBBcNMAQggiEECBOYy9PL70TvRfiKtFcfsYr7xtlLwDgpb7JwtjD9u4WYeAQhVh8+Yh3Ln3xHX0BBOhkGjAjcxSdfUuR8kAYQDS8wtD8t3q8MNmf8pxLNojYx/30LPqS2/QfOjb1qR6AKJ2iDgwA0NlCOq4UMF7jWS5FGPSLDUAQoTPXRuiEAgGCDx3gQRFmRAKIECgq0oIi0e8ciYs7aAXYMxLbewAgysrgYmiOiEi4JES5tFXGz9zzkh5idqyme1kBQeklmlwSkIgIBBR15XtHFxIC93ZJEBAEjvINonADYZEAAZghan8MnfjtOFnPtF50puK/JqX9eajVKROvwl/d5fIcMMJoh3kVh5M4KB0z7tRRwLXto1+vIj54iEoZxHgpjF/XDGDNrhFBBKPxJboIrgqU9XOlD3mTyOm6wSbpA+sQo3+KmQWBRCK76MUQwvrRl21eopnu6KyDV3ht/0Yd2luf6fFaJxY5MEuIVje+ZKWRCwkiAhKIcLQ+R3YEIthxxI5JBom4DhEBCAR0XMoRx30u6Vx9k0+z0n7OcUUWvWjX6YjkamzUWop3CO3yhvVNV7AkwHpG1lJcemTJ6/ENIbzYZwFrrVIKBAKHq+sY1l3CS72m69KVqY0fohiRznPXiZ/1ahGMk9rfGySaIGOf15rzSwSEV2xNINw3AD11A0SMDAh4yUvWjxJAYGGGECGQ4KWlEoUFIVIMAHRoGYSBGVhQJDB0zDjGovaBNNgBdP0K2PGZ4uxzfv7c49LAgNBzXoH1UEdY+iLciSNB8iK+l7VY7h2uLEEYnHdRsxABwDgA3F3/fKyPdIYDBIAAIU5P97/nHvRc2GhHUi8S8fP3XMqgSzK9+tzuBWDdtxfJ8crFveWiU+siTukec9mgdBho3RpfQmPmS7K5ArOg/x3Yh86m2HHfDttEsqQo/ftRhxinJsJ/s5DWf6VjzbrWTrreHhb/ML+kYnXSRzqX9VpTW6uggKIoary9xTaOEQj0lrfeiPcKAoq9Iqa12LrKgTo9jl8gKXmByF55vMyVX8WnX4GU+w9xjCiK47UoxDUNPXeLSLhs5xKK9yZIWFt6XtGrnlleBlkjAPQuYeYAhCBAACLA0Vksgv//JaBXCrUrrqXeRinQI2WRjjrWGiwDd0IHEYGoIwSIC9HH4QGEiFlZZL04+ile/z8O66ujDUWE4ZJ6XvjplS/yikZe4EHPiePLxp67BOBlAoonmQEQpQc40DvdBBGQsKdhWc98h/y6huTS5CPcK1Xd+ukvkLW8uzxABKWXDYjxmV0gQFQwo/jQWr3oyvjXeUhve4M4fixIvXDv0ZEIdAF2IRAiI4EIECIKCoIIsw8hsPCaOYVeOe+xQnheX/ssOvhsKvll+M0Ll7x0izyHAbvj1YiABSKq6eT3OjOmo6YO+oiIAMfhuPpUhhjGIZdiMureAArQMwt3aKbjUKFzwYYg0awIAEgIICwcJIgElsA9G45kyP9GRNja/gvQxVx30oEBkCmCzaiyRKNtCIGZoklYUBhFGCWa7f1V69ZVHQoAXrXcXxRhrzwupVjUd/r1+fI16289F3mRGq6oGmsM/iKlvpATJdFHHvFu9LFI5zzrZj2qV6HDKh0B9YwEuVfvLjFL76EDAIDQ+SV4baDy3sdRi8FqsaukdKQTRABhRKBofu54kQRmfHVazyU+exGpPXfJS+v1l4nMkjWcFFjHLQCv16X4NY4FEJHgA0elCVGowz4CvfmVA0Bne+8Nsh0gfUW0TSSGv32D1y8j3Tqp8qlsrhuAFzoX2UqHZgX6uECIuK5zjcXbO31iLYs6xQwwKlk+gAgirLsBID4EZvY+cGQy4VKMIaIijGw9BCJSqBGRGcV7LxAAWHxgFL1euy98uDoyiM+92yup57n3/szAF+wEO4Nwb9MAFO5EGfcGm0vrEEC0y/UqpMAl+4Ur6OGqyOh/6luRnkZ/GUG0fju8bPxqVNDVa385sbg2HfUSqIPDfd+k6+olJQBC77/t6U6wU9MjuO7vAxDpcmc6PCRdcx0p8fprH80KDCiIkbmLcP9BIPYqumuQIITQNI33HgVDYA7CQThwlKyK/hVA9C8jyV+53NZGqegVFuDnmG20kcIV1Qy7IYY1ZlpTTB+k0l/x4nNf/vBLvRpf3vWCzvJSg+spfrVl/PnLIOZFvPDr+h36k7jmJP2d0tHG81q69H7bjuogen7kxU6uF2GvW4Qu4mdNnJd3MLNwYBC2HglDCN4HZoiO3y5CCEUYEMlo9beJgWIfPldEMEvgEM3qwM+9QKdmQjcsVxa9CKzNRpdy6q9BH38N+rnkZAL8PH3IFVL43Ne9etkv9bgrJ17wS766kbUKFf0MXX+kC3tCvOqc769n8SHEUCARDoH7z50SG4UaAK8zN+KNznexsgCAqAQcYFBa6ZeH/peBMq8ahc+Ra89fy8wOOriIvfVZBEIPgKQTdoBrxZujufYKpP1cuvkbcqCOlUuP0qCnIZBe1D5/vJr/Xvnv5TUv9KSHLs9zoA7Br+lY+tScK6wxesOFEWMYBUM0w/bzF7Uq37tpu1iw6LITBoEQJISYgdhrNhKiT0IECAkpxtVLCBxciI8nJETRGkkpUn/D3Phf6ngBMXavCSFw8MFJ5xYGEGIOnWX6igdqPXbrsJj1CP6yBHRlVj7N/PPq+3p+KCK9bzS+UG85v+RG6zhughf1qZfajAaFPnav0xYAorjulaSoRD0n17jzi1y+bB9VyAwMLKhAICAjdiZHkKhShS4JqNPgAAD66LzeTiaCEAOkJPRukg7zISpm8NwGDp30FGERIkkzYxLyzn0mAV2dnavRgJ93fAo86gR5xyg5Dpv0sRYgL/lxX1ysn0Yun3paXpIOL17Sc5e/TruXx9XRkE8ZHOxlVIeR17y6XwUvaV4AIr0UX3ezF1XQy3rp/FoAUTsT6OHNOnTsci1eeVR8Mq9XFCJeMrQrN8UcB8Ro6I+xcpfYtAfrop+PyH9+/F4h3V5+4RePF2QZ9o6cKKEgahfMwAxC0nnW47C+yCQ+TQA991U+lbA+xWYvz3+7zEj8lBF4gUqgP/OyD/EFGX451P2si1y5LEoTAOhj5fAKb+sN0L3aGbt6qSNLRy+doi+AgI5D77261N1eerX4CwPEKAGK1Nj9dkUFJkRAUZqMGJEODXrvO2ICsc45+9kc6G/jwG4aojGdBWKAAXPgaEYUCS/c8rnA5YrOIOtZ+ewrP+XML4ulXjqec9996nGJ1557yhVB/HygZf9jn7x3eaN06CRWaZE1k1ljoxA6z+mlhtYfV/MIOp02fkYEQO8jWO5INvosEECrGKMBROg9S4z84CAISmkQ8MFba39pArrEgp82aq/mTAICEr0NobehdrEmVxXOv95xxdL4S3kYrt651rB64fW59AqXK1g+h2hk/VfW/Xyhh2uucOVvHLvex3wVAkZ66SOQJHJrgJhXcyWVjWNkKnRB1j2NrgPA8LKRdcvBe+78jAI96BaR6IWLYb4+eO+dBPHOcwiIHJi9Z0Fk5sD8oha2zlJ44Z0/a9ReHOXnh1REhFkc+xiDDNGYAB25w2fIxM/gQNIvwVc+91NulOcJ6FNz4z/9WIOKV0oxWJONPE8En/agztElDEARc1zO/RWmwdDnrPQm+M5JJrLmGdz7m7ucyR5od53Cruc9RVHkKMzRJIjdNHUe1wAA1jGABB988MDBWasVxcQxJ4GFEIXwpdz4v92jY8cxTcZ3KUVXMmUv2cCn3v4p568S0CsuuMIKnjt95ZYrH17AXlex/CWJrF2/V8DKp/X7s0TnVQ60FjgR1OAV4rtKQJ1dI/7U0c/6tl6VQrr6tpHBXH3bNbsVYQJBAAIUAAYWoC6VibuQRWGOSWqBA4foTRLmAMAiXgIEJkAQfMmZKleSpP5mBqHnBnItVaP7N74A95Dsl2ng1ac/R3K9Yv7XHep/lsuTLwCaS1B5Jdkar0qZS5Pwi/3663DTtQmok3XcI+DnunMFP3WrppcS0SrIKJeBdvGCiHDXUfqRH13OZu/qip5pQJIeckOfxKBJeRLv/TpfLFokseOF4p0NIIKi1xKXunG6FGHrd37ODCP9mVfIjeelIQh1ElUgxNEKgNjnxX56Wb91zMDnGW/W/bza4XUMcsek1s1itLWsoUbHaRDVi5zp8n0Boo5DKIJREEh/+jn/oKwdLR2ouYoVP4NTrrkMInKs6yPdD5cmsV5bi5mM8X1RgABVT14o/WO7wCZmCAjU+5gBuMM6FCkWhWK7SN55dg4FCABJxQgypZSIkJCQJxEOHXlLgCDsvHXeI77kC7vKgV6eqs8akZdPREEcouNLRBAE13mTnUQQkF9ae/+MDrzwldeeySsXyItXXn3KcwQkEiUUEnYJ8hE/QMwRFmF8rqEu8+eFzq5XWr8sP+1dnn+F6DNHfGmNduynJ96oSLxghelc0cAxDhU52qhZuAsPjx1nFoiBnyIRBqEAh4CIikhrHbwzmtLB0DrH7FgS21pnG+dbBEDmXCejLN/e2v5XwECvppjnTnAI3rnog8O1BgFXBMkr2/nrKVZX2+joUXr+gC9d9LJTfW0KQugy6TqcHF0p8a+sdeTugjUzBugec3WNRd3g6tNfMKb/Mkdfk+AqK7uCwtbsNVqSLzMjOi5AQAISTURd8SnpSzX4AIiIVNWldx4AmYV9EGEP4oGIEIx21jnbAgSlEDj4YAkxHxZFNrx540Zi0iIvflkC+mVee937q6uZQVhCkBBnp0NzyEG4Z7B/c6QlfWwEw9ox3fVEMBpTL6cRr9zFiAIUwxs6GAqRYUa0QOtuvRItU08g0r0VKOySNrD3hMYW1iDqldEg2HdPesHUX/MKr87LLVwd8MixRAQBFSgvAYV7doWalAA755mlbprgPSE5Dudn58CCqAkxyxJUtJjP0yR58823nHNVuQoORqOxMdq5wXhyd3Nzczgarpbl+dl5XS/LqnkFAb0MfT7jmn5moqi+xGmRUQbvOMQyadwL4D6Mrh+7l59yhapeFDfP9WEd3HK5TDt5gYQoXRZN54G65BaCQIQAKDH0fi0NIo5E6TySkQb7sm4SV3MUI/ACVUXedaWfl8TaizbpGdfL9PiCGJJeYyIkfkm+a62JqIuH6exBwiTALNDr8AEVEQoBgtaKBJ1zVVWuFitrW2ddFzVDkObpW2++OciHRweHeZLsXts5OTosV6s8zTbGE9ra8t4lWVKW1WA4HI4mzGG1XD59/KStKwTcmGzoNeFH3PAcH+51sc9jP2vlpnPhMDMCsgTnbJ/MeDnrkVNEl68AqCtVrCIa6TKZr3hdEOF5GrpUKK5oVHj566X/82WIBQhASAASoLP10mUb0brf++YueRP02HbdCr7U6ppSXm2aIkBE9Fc0g8g2WPjq9UopESR15f0AemzUlSHjwNa5DgTHn6MKjqJjERkEEiBFROhaN5svzs5n5apsrUUWQtzd353ubIYQrl27ppUZFEVTlQeHzyCED95/zwWYzxekFQd++vTZclnevnXn7GzhQyAKdVmX5apcLQ6ePcIff/ghXL4wwpWQp/W04POjtdZVESGa3XtOCj74aNCkXv0T6ZX2GCd1xc4B/VJfi5lXm+CYusiK9RoFisazGIOACNiZJUQYAbtaiC/SfecMfy54LbCs07Iiro+dWtNBpIseaF91aD9PPoggAmunUh9XgYjUZ4itoe/aE3GZ878WQ0R45QF97g4BSvyBVJ8NfRngHgvzQsyk7F5NRJhba6uqWsznR6cnrQ1a663pVpbneZru7m4ZLU8fP3306JG3Ls/yW7duFnnqrZ2Mx9Pp1sHB4Q9/9KOmbV97/bXpdIpKJzpFouVqXlWl9VY4SGD88c9+fmW4n+OmsX+ECC9PxBUCYmbxnZrubSwxAdTx63hdJ+AiAo2v2QNA7PNk+8G9FEtdjiGvozcBYpYSg+p9xygSAEWBAkCO0gZjChXBCyH0kZ8SypUiGNJfs4YRnX/xeVzS09ynEhB11CF94sv6AAVx6jvQJCjrGoZEQCpKWAFERUREMfpiXfyFiGJeH4AAourHChVFquXArrWhT39z3gfmqq6Xi8X5+XlZ1gBijN7Z3rm2uzsZjTh4dt429ZNnj5fz+dOnzy7OZ8777e2tb/7qN4ajwaPHjzlAU7c6MePJZHfvWpqkSFiVVeusSVIyij0vy7Kpa82XKeIQZwg6Dr/Gn69SaEQEhAMLB+m4ZxBhCL2ZGa+wGUGIyQCBr6bsdH+ivx6fCySFK1qGdKSEAhI6QgprsRi1jz4guCeUXp68hJ0ihMe+5liEM/TKS9eduUIu2PX8JQpaa0xXlmD3r/+KCIiELKy1iV+0JqIubvC5xkAAMVoCjTYAxOJjHgVFqReLrQADS/C+quvZfDafz733xhgBWKyWi/ncOb+5ufXa7dvTzY1hnoh35eysOjufzS6iJbGaz+enp+J8YZKTZ8/+/E/+JEmTEOTuO+/cvLM3GA46o6PSgjhblkCo0rytnW0sKXNtd0t7by9fEICJEPviaWseEdnwJefpIkdCCOtEWJEQi4EIghBShLAdWhboEyXX83RFU+M4oS+lfka1H7nDQLFwdZQ4HfLBWM0I1bplxHUpwnUyPPZ006tM3fO7IApcU0YH5l5Uc9ajw31za+qJ43J1dcVUTiQk6tg4UudEjrJRA0XjUhRYhBhT3yLNeb8OAusi6RpsAVBipldfEDMmcnnvPYe2tavl4uzk9OLsnJmV1qQVKnI+7O/tv/fee6PRxLct2aaZnfnZ+eLwuLT1aGermi/ni4sk0YGwruumrs9Pz611SZa9/cUv3XjtNqGq6zr6xoI3053XgcCLy1O/MVZt1czOZ9p5f7m44gxQP8odKKB+VfTFs3utuY+S5CuaMnb8h3AtwLgDn4jRfP7c0oWe/1zWZ1xPcq/BYL/CY5tInTMaLuFZB1+ucAtWsF4EHQFJx1gBoM8y62gIuwpKMVcBhBA6nbJjwp3eJj2yIemVyufsA8BERNEASRK5ZmTngkKxk731b40F48EiwXvnvLU+BB9ZZExI7uJ6hSmCuBACc1lVbdt6YWtt2zRN26AiRaiVisS7MZ68+867k8nGclmKswm1m5McG9UM0+l453B28fEnHy+Wq7wYNMGWrjVFvrW3d+PW7Y2t7f3r+4CESktMxhDw0goqAvK+SkSMSRA5Ra+7HMNu/UWEcUkOkX/0E3iJTnp2sr60V6VorR8hgoC6nPYr0Bk6vNM9RV0+TiJhXMXL0OXXYtS0GUD1RfQ7wllbD65qkV1txxgxg/wCa+kvxCs1hrusaejXTFQVsQe1CDEvvNNMI1PBnnNFWu896h1F9CPR3cKdVied0I5rTHqlFACJkjRRyjA7APAhtE0T8/wjUwshIEvbtovlsqzKEPm9dDq/1hoFUmMCSGNttpHlWXZ2dvrkybOdzfHOtWJxfvrgyX3bSH12/uzizHoLCJ699eAF333vvb/zO7+zMd1qrZvP57PZQgSVoqIYuNYF26zKhfOtAtYm8aH1rRtmRsch6xZHx3GeM0sgEHR2tSuuRWHs611Aj5IBoNtyYC0V+vRKAAixKnGnsfFlPacrerZ0VSAva8XFdd/RiyChihbXKG6oT4e6Qjf9oTrtZt3M5VOuFPPiTj3mvscEHV+Jd0evgFx9xctWu/UQdYO4LnA9KMLcM7dIYhTHr9cCOaogPWUCIJgkAQSdCEiChM46UuScCy4YrTmEJoT5clFWZdM2EuMP+yx2pQiMca2tmgYRRZjZr8rlg4ePzs4uEuLVkJ8cHB6tmsPz5uDwGEHG4zQrkiAwnmx+7ZvvfONbv8ogx6enhJQl+WAwCBws+9ViyU1TpGnb1ovTk6pafXQ+Aw533393++YNrU0KvYrQf+gsCxFQg2APfq7WHaertpn16Hb4Nd4nLMjcCzjq7aQigqLW8duIV7aVEKbu/CUvoUu9rzO3AmKfhAB0hRJhDa26/7xswJK1RX998VodvALLul+xW1Mvtt9r4bLmc4pI1kj6ysUi3WvH/Nle0QOAmJzF64HFHjV3njUGQEnSJMtzhcgulGUZ/YpEqihyAIgiLzYfnFVEorQTB4iJNsaY05OTcrUympTRTdBnlTw9qxvrUBtF1Ho1GA5v79988+5bt26/BgRlXQoDEFhnqaJ8kIdmNTs6GKc5INiqKpJkkE5d04Ig6uT0fKZlbUXrX3y99kXW9PAKm/R6tJ8bs97XCwACccdM7J1+HWvvniHry67whk6R4XWbVw2F/bGWkuCv1C7tprq32KxncH07Xp3+dXJ+RyOXxBEp6VLoXlXw1jZN7rYQEEAGFCAfRGGs19TX1Y4lmrrx6dYKEgURlPXmNrKmw3WUAgBAp8ZEvByASCuVZsmAizxPOwYj3DSNcLSzSNO0hBRPMotStLO7A0iz2SywGg6HYFIwRVKMWNmxzpIk8Sy37rz2ja9/fTQcN3XjnRfAqqwUKQ7cmnY2P2vqxfz0kJN8dOd2EN+6Vim9tbPjmB8/fuzY627A+ynBdTiHRE1UYt3WiH97w9dVtRafP/MpR++owj5CpccrEU49zxKu3Oc5dPAHoEsSlx5lAIfAa0vxVePhVXi6JsD19HQcIFrIEdaZeJ0UihgFERFjImesahdvo34TLo76IMaqV6wYsKtAGATAIBoICqK1RkA8Azum1hGjlg5K9+CNY2ZNX4mXu9qa1FuTLAQnjhDSNOlNDwAiRZFrUp1uLwQIq3J1MZtx4CRJdnavEVFdNxfzRQjh8Mnj4XB08/U3loultfZitjCpfuu9d0HrRbXiEJq6Pjo6OD46unFj//r1/fOz87PTYw5N41oQWDT1qmna1o5HqSJsqlIr1MqsQ1ovaaI3gH2KYaQ/rhj1P+PS7rcXZMn61PqpHIsUdzKz/9B5zaR3J3EvAnrphs9tp3ip0UTFWAAQiBQRSozQ6zYw6HeD62YLASAEv+6ykujA7ixFEV73BmRQBOsq5giMIEoCuZAqSlKtVILiC82FEgxOhAUcSgCh1sF5E2oqLCZOUJA4ROFMtMYQAIQQQqirGkGyLE/TNMo3AaEuhKezayCiBsRYaZ9FQJTCosiAoSjyIs/qts3znEi1df3Jxx+PtvcY09FkQykipbY2NxLi08Mnu9tb5Wp58PTZfD6/vrd3586do6Ojw+Mj79vFbKa1KsYjK5gPR0C1DR4Zlqvls2cHPoRIQN3qWzuhe39Ur8i/AAR66X4pii7JY42TuFeqekb9/BxfJi31UVU9ZcU4NEFC6c3/cfrWxCfrgksA2NdDXZNpT/+IGJ1BsfB+6PPGYwV4Aoz6NhCiiJDSvK7fBZEt0VoL62sFg4gE5mg+EBFkBrZGwfbWcJwViQJUqMgZf47Nsm1mrl6BOA4WJR2agig9c7UyY6QiKCOdARsjs1GIAIwCgQgyAZFEa+o1w468r8wDIgpGw103mHmaJ0kKgQHh8ODgYr4MLmxubR7Ozs4vLrLJTmlXdVOnabqzvf2ld99IjV4pmeTaVUxi33rz7nRn9+mzZw8ePNjc3MiybLGsPeDJxULpZDIeeR9Ojg9PT0/KcvX06UEIXUirxI0Xog39KqroMv4ARai7cD3PlxOOa9p48afLX9d3S49SrmCuK4FRItIVTBVEQQLqfGjPyc2r/egV8peCH+hSqHU5L1cMg9ErgutWWAQxOhK6ZkkTESECsFjbNnXjveXglTJ5UZg0IwjEbjJI97c3hjnBqszQeAjBO26UX3J1Pm9XByHUSKD1MMk3B8VmmsFKjlq8afWgwdByweARmACJgFARAxuTpel6mXJg7Gv4dWwVqdukHRF7w5hWOk2MtS7atavj4+VyOciHTVVX5SoEDsFrY8qq2tra+vrXvlaEyrn2S++/V1cVMGiTnJwv7927d3h0xCI+cFM1SZKPN8audaPRhADPTs+fPX22XC3m86XznqCPSHyeruFVR5+7/znH86KqH4L1zF4hnCv+AOqY1dVmpOcruNaFe9kHgFfbWatEInJZrayTUBHsMKz98x2QY+96dkUdLFNKRzNqdEp1QFBCVZYnp8eLxWK6sfH2W28Oh+OyLMuqIvY74+LGtW0MrZvPWAiTLA+Li6PHg8nUDDO248XxgfNsDHrdWr9SFo5Ojrf3xgYlH7ajzFQAlU4BFQIiRZNJx14Jol0NRZg6PyASIilFRBgdcHF0FCmlhblclYiY5wUCbG5Otc6MTn74w+9//NGHSZoNiqEnc+fW7W9/69ujQfHsZz94+PB+uSq3dq7t712Xk+OHTw6eHhwq0sWg0IkplNbai2cC0EpnWQICZVXFUsCDYlAUBf75d79/RRNZy9fnJ/i5Kf80Gro6p9136JWd9U8sl1X7EfEKT+pRrVy2s1aIOoK4ApvWF3VpZiEaXaQ3/3VFKiCWo+TQfQQQBAUKoAsGIqJ1/UGiLrycFF4ZE/atLatV27TvvvnWzRs3YonJZjUP5flQSULaty34BlKdj4aLex/+/Pt/uWrb8bUbN/f3ivL83sOPioFy3pV12Lx24w/+6F9MC3r9+n7dgh4NXnv/N/DWB20QQUVEiASCKAoJ+751WAFBEMkFX5Wlt04RjUcjo03r3KoqnXNJYh4/ftK27Y29/SzNy7ZpWp9ng4vz47OzI1QqiN7Y3bv7+utpok8OD8rjJ3mWzeZzF8JkspkPhwFgsaqeHhzM5osggqjG40mi9cnxSbVa7uxsLWazo4Mni+XMqGS6taUSo9fsoU/fx+fJ4DlKkpd/+3QCevn6DhH3CmrHOdYEFAlOBDoDzNVSV8IALHzF4LlGR6QVsYQolTojKApb1poAMDCjora1bdtopZn55OJiuVwOh8Ot7a2mZWEejIdEpDXG8iVKxUwHARAOIVFkhsN0c2oQm3KpE5Wl2VTh+dlxA7XPB/lgillulLdnz/67f/Ev//P//J+dnK+u7+1MRvnv/NqXp0M6efKMva1bPp6XJyX9s//+L/79f/TVjYE+e1geXpRf+S21cf1uixopgQhAY2IxEQNXTW3rRkTyLA/BL1el55BoJUJt2ywX84vZzHOomxaRrLUAdHJ6trmxOdnaChezpl7t7e3t7e0C0nhjOpxMkCg4ZyejQu2zs1mez2azo4NnOkn2bt3cnE6yPF2uqtlssViVi8WCAzOHxXL59Mmj0XDQNG1qkrfeeadqmrOLixciEiMNffZGhZ+tnH3WgWs9q+Mj3AHwqwKuB+eXd8UlKEws0THJfQpEZPAIqDUigqAY0ggSgkdNFxfnq+VSGTUcDpqm8c4Ho7XWicLt6YbRukjT44ujosgMh+ViVpar8Xh0fn6+XC63trY2JpvW2tFo7FtHhCBSztz89KANNkmS+f37/+Q/+0+//Zu/8rv/6PeLQd6Ks8vZD//0X/xX//Sf/ujBs+s3bzfij+7dm82Pv/3Vt9rlUZEpbQq3Kpnx3qH953/yk//5731zspFYt/zj/+o/+/bf+3f23v7KohYkrZSKRb3ZOwYmkJ/+5MfD0ejWzdvBe0S4truTGuODXywWVbkaDAej8ZhIRZwXPGuTDIdDZ721FgeSmFRERpNxlg00gIBoo4eDvBF376MnVVnZtq7KanlUjsaj7TxVWaoRB3k6WQ0uLmZt2y7m80FhsmSaGZ1q2BiP33nzLhDVTRfS+jk0sRYdn6LdyyvPwvNCsC/urCLhsHAkI4Ye0wgAIBHFHDcURqTOYQQCHfuRNDUayXoXxGsibZRzrqlr7/1qOa/Kui7rYjAwpEIIW1vbiJKmyc7WdsxTUYRVVQlA0zRGqWvbW1W5qufz1cX5wwcfk8IkSZTSF20p1WKysTNOk/NqOT9fNU0To28AxTr79JOPTurls9nZZGvLe2tt64M+Wtidcf6/+f1vJ8Nhwk2Wvil6tDp9qrXJ8jTNh2XdQD3f3dmYNf7x8Sptq/Fm4efV/R/8yXAwwsldACUQM4u5dc1sOf/wo5+uFvNvfP1rwQfWSqXGGA0iRGo0Hm2OJ0prROQgLCAEIJDlubPh8PDZqiwHxXA0HCPS7HwuPNdaefEinBj0rm3bdjrd/PnPnj199GRv/7pWNB4MVsuqrRbT6eZkkG0M0rzIOfjAAQhTbQZ5DoLIqBMjiLpHp9wZUBF6xekSC/X/ekvbc/xBcG1L7gVdb359nnokjsw6KgpjkhZFLtTb7iiCSQHrgjEKugBmAJHgXdu2q9m5d5YUeA7eOWvbwWBIoFrbKILNjdGN/b00ySAqLwDe+9VieXZyQgBIYG1brVZKqWw8liBpYtiHerU6OzlqyuXx8eFkNN7a2oI0xdGgrRanJ3JxdmbbQEjz5UxrNS4K5dwH7771zt39L3zwTnChLusggX14850PtkfFeJi2zjblwjJayKtBYquTLIViOB60drVovvLuXj7IEJParmBehxCOn37yl3/0X7z99d/ffOMLdVYYL9g25Wr1J//jH//kpz/8/d///aqu29baptne2dFKc3DIoFBRb79ABOEgXrwPdVXb1jZ109ZtarLhYBhTfZRWgHA+Pzs+OlSaEo3FYKBR7W5fy3V2586dydbUe6807mxtmcSslss809vTCTP74Gbzi+VyZZt6OBhpZQIHANKIINGei1fMsWvTUGe+ozWnAeyqekMXKIaCdLnJl0g0w6tLSBSimZ6MQjIsHLxHAN2bhFgYuhxEEWEQMFojKqOVUgoRtCYX2DsHBIlWlKUqT/NBpoyyrbetS5IUWJq2UVpliVFK1XU9m83K1SqWy2mtnUwmo8koz1LbunY0NmkaAA4Onj54eNisqmq5DKGV0BZZvrmxEeuIWNta758dPHn86EmeFkU+aF2zWi6Jw8508sFv/vrtmzfEN8uLuYAuq1ViaHO6Ocgy21bV2cl5uSStB4Pk2htvrGZ5XZ+LCALubm/NykMbnKvbi9lCGzUcFs18Tlrf++G/vKXI7L+1sb3bcPPxxz+7/8lHAPzo4cPVqnLOZ2mWF3kxKDrjO6zLtgIzK0XMrIhABIza2Z7evLGfJBl7Z601RgEEAtwcDozsBXaKRG9sKsSt7a0sSbM0dSjWO61NRBMbm1NEQlRIoMEMi1Gis9SYxCRdLCgEHYKP2senalgoANEhytSjbO4cTwjICJ66dFCEwIgCHBazC6O11jpJjGN2zimlAWGxWgKLIuLAiTHx9a1tRURrnWaZ1tqgIBIoQsSyLB3BdGu7rEpKdZ5lCtG2TblaoefMGI2klQmB03QsIForEHGtPTk6nm5uIkhVVTs726PRGIlWVcvMjEYrQ8ivv/Hatd2df/Jf/BcP79/PUlMk5vTk6OnTpzdv3EjStGoq5/35xQUwrBbzuqzruixX5TtvvvmNX/2G1snjh0+yVBeDFEESk7EAaTXYnqbOrhymrYCE6dZmoYJRXk7tYrWMKuhsNl9Wdn/r7mK1GA4HTWOGg4KDnB193HzHHiz+gMcbZVs/ffzs4ODZzZu3v/H1r0/GIxHMBgOtNEiI23+utVeW4JwzWnvnvPMioo0hIq1EUWD2iB7ExzoFBDRME4mhtgQAkBVFCMGhCIgxBhG99yEEIiUiTdMgCiEmJo313RFgOZ8dHx+OxiN9cXJy8+YN770LIYRgjI419zq004UWA4AQCvXnWVDiTrPiFXgMwTX1arnM06RcLY6Pjxhksjm1bdCJOV8sA4j3wSQmBB4MBnmWa2VcS4N8kCZpogwRpWmiNDVN650NzErpYlD84Pt/FZy7vr+vtGraOs/SPM/Go1GW50UxgBiSzZAkiYCcnZ/l6ejeJ/fOz8/2drZFGAmvXZsqbRhlMZ9xCFobQGmWNYo/Xy0PDg6qark5nShCCCEvislk1Nrm5ORoVZbWOSDSWhGREghV++vf+Nbf+d3f/clHHx4+ffL+22+9/fZboDMQ5jY01oGGOrRZmm7v306Hg3I54+DqumlWTQAqq1YBAFE+LA5Oy9pazwKofPCCMJvPEcJ8Nr/9+rvff/ST+0cXotO///d/91e//q2dvX2I1mYkrXWvx8Z4lLhPimf2IGSMjoEfIQQUlOCdBNu2LngJYowy2pyenWVpNigGImhb55zPihwAILDqDZS9YYwAQKnMd5u5EpGanV88evBgPru489od9qwffviTaZEUg0HwLnhHlCapCSEEHwCAiIhIxa3PiWJx62AdMBuTKBFmZ9tGvHv24P4vPv759vbWYFhMRuOda3ug1P37D9u2Ghd5MR7WrV0tV9PJZDIat01DBEmSALi6bJqmXZUr2zbz+YUyejAa3bx1a5BmGNTudHx8ePy97/3Ft7/97evXblnXhOC8a0vvnLOpMUrp4WCojXl2cGSte/Tw4ccff3RydHTf6KLITs6OxqNRlqeLxWoxW0TWqRAhBO/dxcXs9PRke2/HJKm3LQocHR+1bT0ej8pyNR5N8sHAB09KKU1g3d/9R7/+5fe/+v/9Z//sv/kXf7Qsl3+xd+0//j/9R7du3fSu8XW9XMxZKWN0o0yWmixFW4f5xbnxjW9XHIA9GKOH42FaFMONYeusitSAiKiMoRBQxIKff/HNW3s3bt8/Oj88OP6TP/mT9z/4whtv3k2zvM/YvppuxqRJg0JhrdViMa/LWhEmaVrXtVKqyAercpWmWcTdjW2OTo6Oj4/ffvvt3d1rWqsQQrVaZXlORCKd60ZErLXee++8NloEmIPWOjHJdDpFANfuJUkiAprrVTs/H6daK2qZ0TcibXC+81xqhUoBkTKJEgWdcwMRUCMQoLAQYgDIh8Prd+7kWXr3rTezfPyzDz+01g5Gk+Bta9unD+4hqRBCu7h4sFy0TQNCWuvVqnSuZea6WtVtWTWNTtLp9s7FyZM0yVarioO01r199439azttWyuCtrF1VQNi7m1IMuecVlRf1J988vFrb7z9i4OPHz54OMjSD3/289PTozwzt+/c3t3ZOnn2FEScs1VTOWuZZbWqTs9OOfDpxam1jojauinylL2ztt3dvTYYDMeTDaW11tr5NtTND77/Q1v6/+z/+f96cn6WpLQxnNQ2oEkyTcuqbKtVXa+8tdONjblrERrrm6auZ8tzbpvAwiLOu7QoRuOxPDk+fHaQIBJAlmYsokgDh6Z1q6oKsrIhAebT46PDx8+Oj05ms/PX37i7u39DWKCP2UKAwBxcaNtafGDviSjL06ZutFZ5lqZJRkpPp1uKFHNYlEtEePONN3d3dq1zTdNkeWGMUaQSkyCAD16IRIBIdbhKa2aJW9ODACClab6/fx04HJ8cG631eJgo8mV5btKUkBQpQkQliBQCQwgAEgI7dqCTrhQIok41EnkOXqFJ8wTyG5ujG/iG9zZJs7Pz+dHJYV1WBwcH1rW2bZum9K5NjSFC7x0xmCTTykgIq3JRVYs0obwYbI+Gg9HYJOroyYOz2eLo+DjRiVbm8aN7f/SH/3y5WI0nY+aQmmSysXnz5u2Li9np6enO7s5isZpMp43zZ7Pzx48eJYpc0w6LfHM6Ws7Pgi2Npra1q+Xs+OQUBMqqXq0qYR4OR3mWDwfDpmm2p1vTzU0iunn9+s1bN6fTLWvdcrXSxpiEVmcXP/vLH6CV3/21bx2dns6q8ou/8lVEvJgtBwm1rRuPh3a1qFbLg9l5XS2zFFxwVVthcAo5SVJF6IO/uJjVVc3srauL8QhQCZLzoW7rsloarZxwnuep09NNc+3aBEVlRXZwcHDv3v1/7z/43yqjuffbxGA1IkzTlDUrpFQbo1SVlgBYFEPsUqQlSECiNEkXy4UkPJ5skCJnnQQmpYqiIKK2tWVZaq3zPLfWJkkiSErrwEAY6Uk8MwsYrQGwGAzzPNOz+XlV75AmFs4HA1Kqz/BBRQYAAggIes9ErBQqrTroBRzYN2070HkQaesGgE9PT2fn5+PRgCD8D3/43y6XS2sdESCCt3WWGGO0Is1dyT3gINqQ0aFZuaasRc5tYB94uLFBxgCHqlzOZrOmbhDRmPzkUI/Gg+l0OszzP/3jP3785Ik2erq19dbb7+xubZaz03pxvrs1XlxchFBrjYcHT5jDxmRUVZX3nKX5td394MPGJGitQWBreysf5F0Jd4A0SVkwzdLlsnz8+JkAFEVBWlnXQtN89StfUU4e3nt4bbwpLMBc1U3bWAzkQZAlHQyqqjybX6QJLcplcNa2jdEEGlerMkoWYwqjlwCSpemgGCijlU7btjk8PLaumUzGTcuzw4PjZWAzBGoUaiSxtl4uy7PT02t7+zFfU2uNAEYbQI7eHgLS2jR1vVyUSqnWucQkidZCGGFIrgaoyDvLwhJEKY1EANi2FhG01kmSnJyceB+yNJ1Ot/IiI02exVoX4xQIUQQeP3n8sx//CIHffust/cUvfpGQyrJiYFJaZaqyNQAabYzRqIhAAIAUaaX77ce6oLMkTbU2gBCsU8okmo6fHT56+KDI02dPn1ycnzdV5ZmbptYKgcMKYWtrazqdNE07Hgwno4lChSh1PUsMK8qQkrJuVmVVZMXG9vY1kNWqHA4GbdP64K310dBwcXHx5NGT+WwxHI03JpNBni0vTr/3ncMYGxPa1mgP0pSrVilQirz3SZIkRiGqJDHJYGitz7LMGK20BubgXNu2VVXFUpVElGe5IOSDASKRojRL0QAjfvPb3/zhRz9/9uwwSbPj4+Ozk9PhYOw1AfimXgn4hbec6WQyMJPcLZd0IXVdc0BE1tqEwD60i8XKtm68Mx4kaZJnJk/LcmWt94FMNpnNnaPSi3Hcem7zNNne3SlL/857XxuOhnFrTtXHXvrglSIBJNREFISBSBlNRKSUgPiYUk3IUV0DRFRxC2ltOqW7ritFyoyM1unm5pZSWhGtVktCWcxnmxvjwiRHp0dNXU9GY9u2P//edz/86c9Pzo7/+A/+G01apUlW23mapsJ8fnEOJEprACFFqUmdZ621IkNAEiBEEQzA4kmruNd6liWEaQju4PDZo4cPvLNb081vfP3rTV0tl6u4y7rSKsb8KkUbW8boJE1SrTSHYFJFJMzYtm4wHGeDURBZzhfLcrVYzENgImqbRmutFFWrRQi8sbGxv7c7Hm8A4M2bN6YbGxzcarWYXZwv2bWtRfRIQakkupZGwyEiGZN20E/7NE0HxSCE4LzL82I0HMp0M+59FOEaIIUQmrYySeqqAD68duP6zs3tL3ztSyflqq5bvjj7+U9/nCXJtZ3tEGrbVFlmtvZuKKOUeFudY5pmO9s/+sEPlmU9HA5ay0qrqinn84X3Ps0SpVApZA5ZavI8FzLKDM8W9nh1ISYrWyfCgyK7OD+srd/e3h8NhkmaBWFnnQ+haRulNQBoTRy4aVtEJMCiyDHmtkaXMCGzsITgu53XiBRziNcQqc3NTRFhhjRNlFIisJjNuLEsfHjv4zOl79594+zRw+9976/u3n1ze2trf3NSfOGdg4Pxs2fP9GK1fPL45+++8y4AnJ2eOu9293aUIkUI4AkTTaiI2DttUtLKuWA7pU6iSYgQos52dnKyms/3ru0G7x7cu88hvPPuW9evX3ch1E19eHx48ORJlmVpYtIsHw4T5LCqKmFumtbboBRZ1xR5DkitbVdV2TStbVsBUIqmm9Pd3V3p/WWkcDQcEqnZxfzJk8fHh4e2bVbLhQJJ8ixJ0iwLOzvXQghEejweI2DTtkoprRPs4+Scs8F70hoBhDkEL+xBGJGYfZplIt57SwpXSxvaptrfcs2MoL6YnwyLiXB4dO8T11Rf+sIXr+/vbE82AeVs1Xznr368OH32O9/+Mtftolk01obAdeNQGS0wX6zmi7nSqI3Wmjx79JwYNSjSrb2bkI4uDi9WoQTfKmOY0Vq3WCxq67/znT//rd/83Ru3brvgiFTg8Mm9e2+88YZWmXcBhLVSiFGVQoxZRPEIgITBh7ZtRLoUEEQiUrHWRx/xQME757xWCQuu5nMGHiX5o8dPfRPSVI/y4cc//XD89a8sF+cGcXs8euPGN3RZVRezi7ZtB4MiL1LjFTs3OztdlWVR5LvX9ggQlc6yfF7NW+smG5sxRU6RAhAVc2JEHj148Af/3X9rSH396187Oztrq/reg/t/9Mf/ggOTUkiok2RzYzIejhKTFINBlmfOOYVkTDpmXs4XbWsHZmQS09iWtN7Z2R0ORxzYWhs4IKDWCRIOBsPTkxMGIVRZWty4MdJaB+etbS+yVHwAha21SvlBMWLxzKCVFpA8L6J4ml1cKKWNMYpIAlvXIGCeGgBwzjnvwTpt9KosAaBtW2udhDBKQNnl2ZN7OwNza2fjq1//tcW8tNY6Z0+PjtrFgtDWvv7Bz+//6Z989ze//VXvwtHh0dn5EYgUxQgBkiSrm7asGm0S11QsrIiSLFVKsQ/TzY1/+A/+QbF17f/yf/1P62UthEwtgPEcmqbRRpFJVlU5m81EhIiU0e+8/ab3UjeN0Uobg9BlBXcbmnLwIQAQKkJBIpUkSdvaGBJBioRltVzN5rMkSRSp4XBMpBWpLM8HzETw8+/9xSc//Skp8+jJ09Vivr01vXXr1unpmXNtnmXjyUQT6Tu37tzcv2lte35+prXamEwQxFmXJcn21jTYumrb1joB+OjDD9+4++Z4Mmpal6ZJ2zbFoAAJ7N3F+cV3/+Ivjg4OsyRpmsY6O93ezgdF69oH9x80bYsKd3d2pxubG5PJaDQiolVZLZbzyFiN0tOtqYgkSeqcO5+fF3kxGA5CYAQMQc4vzpaLpXUuzzJr3cbG5ubmJM/zwWDofTg4OMizbDocCvNytZjPF2mR7+/vt22DCMYYAWTWKCFRmoGVIoVBE0xGg+nGaDoYbG9t5XkOhG3bVk3d1G3TtKvVCgGKohiPJ3mqru9u3dydVsuZ2NW/94/+TjbeDpTVjlNjiL1wODs/Xdarv/vb1//u3/mN23u7p4ePjo6PETnRiTFp8A4ATZJsbk4b68uqWq3azXyQktJZ1tbt/v7+1rWtdDz+j/+j/8N/+V//wdOT2eHF8uDZ2QfvfzlJzXRr4+bN23ledOYVBJGgyYBmQFRad1HcIADoQ3CNU1p3aUKMoAmRtUkJjTAjkjEGUBikKIZJmkwmE0SVJbkP4eTsvLJ1lieD6eZf/exnp0cne7vXtjcngDBbzG/fuZGlJkkTYxIE0een54CgjfrpT3967drO1uam984Y42zzyS8+Gg5yrfXZ2cVqUW1Pt7Msf/rkiWfemm4671flXGttm/YnP/7xarl49vSJd85754LXxrRtu1wsBWS8sSnMrnHlYpUn+XL+bLlckVakqakrTeSVUkoPh4MQ3GI+Xy2XrbXz+SI6fERAa9q9tjOZbGxubGRZpo3Js6xpmjwvzs/PEdVwNHG2HY8mSiultWf2zimlvLfGgIgQADorts6y9NYbN6/vbe3vTvZ2RoNc6eDEiyIdRAJnWm/HYMDgQ7Sj9i4dDKEeT/I7sOPLelG2ZmPzoub5xZl3lQvehypP8GJ+4oN/2Jxvb26+9tobR4dPtNZZnktIXBBFKsvBGIUgQSmdJzpBQEKTszJHp8cTL6NU/d4//O2zitRoRxwOssxzSNN0MMiVMusUFEFg5sRoIQBCDAgAilTw4WI2T9PMJEaAnffIEDgYo5IkNUUC0b+l1Wq5AKSsKNq2ffDwcVXV5ao2ScIhXCxmo/EAEP/P/8l/8vCjX3znO3/+4x/9SBOJ8MePHnzhg/e+8uUvDwaDWPuMjDHj8Wj/+v784vzw8CBLE/ZeEY6Hw9G4aFu7nM/zdLC7c61e1Tt715IkccFlSbpYzP7ihz8sl6tffPzxYjbf3tpKk1QRAeo0z9Ms8yE4ZwEkSZNhVlzb2WmbFljSxDBiYL+3vzcejJxzF7OLi4sZMw8Go7TIvA9JkqZpTqTapo0Zw03dnvPsjTfeAADnGFH/9Kc/a9v2+vXrzOxDqNq6tV7pRJyL9asUGed8CHWCfHd/942bN9587fXtrQlw4+1SSSXLtrWOQJFJtVKIwG0DqKKBWFizaOqKPYECdI0dZHlZWbGL+cHD8fb+8Nr4Jz/55Ht/9Vfvvvd+WdU/+sGPV2W1fW1nf//GnVu3J5tTEsiy3FnrxWqiqq6SNM2Hw2dn81u39vIkq7yZrVabOn364Gk1KQfDgRpv7+3u4fCaQSPeLauyKkuttdGglJrNZ0abycbk4PBgOBoNRiOi6I+HtmmrshyNRqRU07ZEqigG2pjEmFggQ5GezRYHhwfL+cIFG0K4uLgggtFoLALamNFwmCTJYDQK4utqZb3/td/+ra9/65vHxydn5+d1XW9NN6/t7qY6Dd4jod7Z3gkcTk5OEODWrVtN05ycHI/Ho8ToLDHixVu/v3fdM5ycng5HY2MSIpUgaq3bxv7lX35XK6WU2tvf39neFpY8z1DR6cW5sCSJSdP0+vV9YwwKpHluksRovVgsBSEr0s3NzWCtD340HI6GQ2bO0tyL1HXjXEAkQjRJgih5ntV1DYCHh0fn5+dt2wBgkpjReDxfrRCROTRNbZuWAwTnQTwqtM4iu/ffeuM3vvGFm3ubuRKuK26OUbwGi2ytaxNBpVCjB2BCFUCYg1JaYjIyCnWBcCIgCOytY/EErppX119704a6KhdNtfrud/7st377t7/+1S89eHB/1djZbM784I1b+4Z0mmd1XZdVtVoth6nmLJ2PNn52b/Z//8+/9ytfeLNuW9LwxffHj548Ew5KkVar8VjSNG0q661NkyRyF0DwwRdFoZVy3q1W5fHJ6dvvvisiiJQmqUnMzenNJEl9CHXT2NYyh6b2FxdnFxfnwfssK1Zl+ejho9ba23dukdZv3H1zPBkikLUuBHbel23rghMQITUvq+OLi+nGxt6tm3s3b8To4STNIEhoas+sf/bzn21uTpl5Z+ea904Qqa7Lujk8mtnW/uo3f/XGznVmOb+YlWU1my/yweza7rUsT5XCLBtsjKePnzwR4TQ1gGC0XqwW+WDQ1vViOb84v3j7nbdv7O99+OGHaZbXdbNaLrem08a2eZ4fHx+fnp5QrCuGkKQJgkJUAaAoiqZpiYxSSou0bV3XzfHRcdO2xpgsSzc3NpM0WZXl6fnZeDKZr5ZnJyd1VRptSIidr6q5983O1uZ/8D/7n/7ql98Du/LNskGrpQUSYbS1DyzMKgSP3pH3WimTpMDIwMZobYwTBhAiRDACEoIFbm3brMr5opyPNq5t7ew9evpJlhaIijl89y+/949/7x/tbk+fPDuyKinL8uz0/M27byRZSpqyQZ5mys6W3AYP5ePT6tF59eQPfpgCfOVX7rTBpbmZO7dBpLwLtpXgIGI4BG1MzJGKW3ehUki0f32fGVFwPB4PRyNC9M4tlyvAijR5H07PTp210XCNAEWRE9F0ujEcDpQxRTGwzlrnV1WdJhkQWWtDDJnTOrB3gdu6+eT+g+SttwiBELXWLjAZ9sGLUkCoHz95kg+KEDjhZDye5EW2tbVdVeX+9f3ReHMy2kBU9WrZWr+7f/3mnQQRRWHTtADyyScfPz14KsKDoqirMjBPJ+Of/PhH0aA3GAz39vba1n7nL/5iOt0sigIAq6oKwq+//kZVlatqpbRSQnVdMfN8sQQBY5IgMhyOl8vSaJNl2WKxmC1mZVVqrbe3tqqqAoDAvFgsnPd5UZBSd27dLrL0/v1756dnucmaaqnQ/t3f+fV/5/f+/rVJwXYhyCbJCDNARyIhSGY6tzMieu+cb5q2bFub6RQIXfAAhERAGhkRCAQkCHFQ4JwtVW7e+sqXWwlW2Jh0WBQVwsXFxcGzw3ffeUsnRUtGp+nje/fnldsuhiZj8j7JCw4EFT48/MXj2UIRTkgPMxhqHZoK8mFwbrFc5FuFtxbjTntEGHcJZGZABSrGcka9KU0zInLBO+cePXp0dnwyGo+yPAdFJkmGo5Eh0saASGCuqoqI0jQlVPPVsrVN21jnfdPUS14o0iLsWQKzZW+9D64NwZ+fnU0nG9PNjURpZq+0stZ2qQcs+le+9rXJZGKtXS5X5xeztEo4OGPUeLIpqBdlk2XZZLo13thMs0SY27ZVWp0en3znO3/+g+9/L8uyLEli4blqVc407e7uJEmKKIvFMvrxB4NBn38sd+7c8d4dHR8dnxyPxiPvgzFaBL3npmkBoLXOs5yfz5lZkR4MB9Pp9Nr+tbqpJxuT1CTz2Xy5XK5WyywvRqNcJaau648+/OjDDz8sy/rWrb0iTd98ff/3fvfXvvje6xAa18w0CqJBMqSUUEqKlCAx9Bk+QRMkwpkrfVu7tiUIEJixlZAy+Gh+RwQO7K1zbZtqtXP9thjyAMYkk2Iw3ZgQSKLT7/z5n735+mvbW1slo84HeDc5PT1tjs+3dyaVs6uW52U4LO151RqtB0AbJtnbzkeJ4qapl5Ib7ZpmuVzpkVdEKCjMgQOSQiJNmKp0nQbBQVarpVLaB392dr5cLre2t33wSuu8yEmpGLsTQtRSVJIkWmsBPjh4tqrq4WhIpIzWNfN8Ng/eW+escybJhKCxrVZqmKaJ1rFwPUsM+wPhEF2l3jttjEaiJMl2doqqqpXq6kwIQ5bmg8HAe3t2dlYMirZth8NBkqREiIRn56fMPBoOH967X7flFz54f3u61bR1kacxsW1Q5K2zbumMSeqmWSyfcOB33nnn3r17jW3Hk4kIOhuWs9O6akiRCzwYDBggT1IE1FoDQJIkSEiKptNp27Znp2chhPnswjqXFXm5Kuu6ZpC6bqqy2d3aUcy3rm397/+9f/fahgl2iYQcwAMpFaNqGUBJQEQkEAk+Btuy9RI8BK9Reeamqo1RzEpA0CQsjNgSkEBAAfZBPKQms81Kgh3rLE/SyXi0WiyTPC0F/ugP/uir3/ymKiZtaylNneD/8C+/G0Bdv3n99Ozi4PD4/qOD27dvnR1UufNFBoNRZoyA+FQVWZIkxmijV6vVNkAIsRAnhBBARJFCga58GWAIDAgmTQmkKPI8S5M0JUSJezeFEHO6Yx0ZAEjTBJGapvzZz3/66NGTvb39rZ3tNE3Ksn7y5Ml8Pr+4OPc+bG3tUqLTLEu0Wib64vS4yNPRcJCmqdYKkCmGsQJorbUxZjFfWOu2ptt5liORUjEHC7I0CcE3TWsSQ0TeewGwznrvkbCq6/liZjRd29vdmm4kiXauZfbL5TJJUmaez+dRuCqtiyJjBpMkjx8/blprEmNbV1cXIDgcDBOTJakxRtVtLQLWeRDUmgB4tVpZa2NoQZ7n0WNlmybLc0RMkqQsK2N0Pt3c2Niwq/mX7779H/6v/t1JBm21QA0opJRRpLXWABS6AsmAiNJtgx1ARMRHH3Jb16v5slwtxuORCloZIFRArFGDMKIQIXtWRMG2gKWrV6kZDPJiZ3trtZi7VtRAL+eLP/zv/3Dz5o1Hh8vD4+Un9x4eHF8sm5AWedu2seDXe29/KdGQKi5GKiuMMuSDA2ACMFqLSAihqmudjUXiHhcYq5da5wBAESmlSGmlYowaAQAoBX1h1+iREOnruAEQogAyizHpV7/6K0rpBw8eXMzOYwjiYj47Pz2tm6aq6qZuTJYQqTRNFMj8/EwJbG1t3bx5ExGdc2VZpmmmNGmltPM+y7PJZHJ2epblhVZaICCi1joEPxgMi6LQiQkhKKV8CD4EH3wxKOq6ms0utjY3v/DFLwyL/OGD+0jgrK2rikiFwFlWjDc267p11tV1o5Spq3lZVsYYbUyWF4Fla7qlSTlnA4e2bBerubB4AaMSAAzB11VVN3VeZE3T1E3FgZVSSqnVatVai4RZUZTVyi7mAPZ/8ju/8R/+u/94EFa+XjoEZl3kSee76OryMfQVmTgKL604BESCECNkqtVycXJ61NpmOByaNCuGmlB3qa/ASqNOtRcnvkoTs1qV2UhPxsNlOZlsTlbLeqSzqqw9y3I++/hnHz99VgYXEjQOVF0FwkQwDDJDSm3tDLcHJO0yy9EkajgcZllGCIqUNnrpG+eq0WDMohlQEDRqCdzaFgQaZ9F7rQ0gxgIUqqusF/PpYtBW5w3rasf0aeoAuLm5+du//dvvv//+48eP79+/f3J8cHp2ZltbDIos27DWaYSmLol9G/ztW7c+eP+Da7vX8jx31hptJpNJ27YSgoDo4INws1zMmWE4KrIsWy3n3nutkxjT3vFPgFjiOjEJISiFv/d7v/fowf2yLNum2d3eOj45LstVYox1bnsnL/LRfLFobVNVFQc2xjS2Ho5GeVEo0m1rm6oGwqdPH1WrChGyPCcdi0thkmYmMd55H7wIZ4keDQdZlogIe75x/Ubb2sdPnlpng2dQClAS7d+6sf+/+Pu/A3a18AsygKgH2VArwwKBAzMEFuaguoACQESlNHAsAcAhWC2MwI2rj09Pqqq6fn2/QKJymeVZAINKAQdrW8GAiqtqkZgExc4uTja2dsp2c9XsZYNSPG9sbpRVs4V6/+/tIhZHJ+W9Z0f//K++N6+DV5mtq9f3rqUZqIR3b+waHhEHANYqybMiSzPnHbcVazl59otrW1tWUo9pgIAQwnpjS0IWCN6nfcioSRSIhOBj+IAiFTf1g8sdn6hL3u1zR3d3d3evbb/77lsnp8eHB4dN0yql9vevM4smBQJpaooiLwaDp4+ftE2DGxuatHMOhEdF0ToLgHpjPC6r6uGDBzvbOwRCIlmeBR+0SYjQBw+CCjURMfPjR4+1wsnmRp5nb7xx96tf/erJ0bHS6jvf+U5dN4S6KIZ3dnaUUsfHp9Z5FgAhRFRKIVLcAm22nHkfgJRJEmFIkoQQtCEgAqAsK5IkDT4Mh6PXX79zfnokHJIsSdKEA2dpZnS6WCxZoLFtzBKxzSKT4n/9+39vWzersnLEWZ4aSpQ2hNq3tttINiY7x7whrYiUAkSA4FofJAQf2lqCC96WZSksVVUiSEKAmWbH4IEArW1csNY7cXY0DAqxtS2HkOf5dHunGEysrTWimS/b1voADG66mYjZT37wY+uawAoQl+ViNjsfjQZplkzSoqlKTapqGs9ct43SVGgB37YSTk8eTvfecNxFoGdZprR2zmkQIk1IILE+B3obRRsE22aDYVeGfV35+IUUYWYEsN453zD7jY2Nzc3Nrr4soAAaZWK121g75vXXXgscIstJksR6RyrJdcIAGhGzNH3/vQ/K1apclQhYt3XUm9rGxhIXrbPMHMWtc245m0kY5nl2+/YdRaRIVVUVfGiapm1bIipXFRKVZQ0ROYk4bxGwi4xEUFqnWbGxsWGdXS5mg0GR5VlVVYPRZDrdmmxsbE6mk9HowcNPJuNBmiTe2btvvjEejyfD0cX5/Nmzg69+5YtJlgNg06xCebo7VG9sJqE8S5Jhlg20ViJk64YZQDDugBTYEylEStOUtArMHgSYxbm2rNumrMsLdnY2n5VVLYBNU48GmXPVcu5QUVEMgVTgoJXGFNu2FQbnbAjB2XY0nNQOspS9q2YXJ6RCMTSBoWyDYfSrOkuVJmFkVLhaLZRWg8FuWVYDxYPBcD6bK0IXwjCGBriWMDjn7n/8Y50W6WTHB/IBY1k8ROQQrGsBUCsVCy1qlDxNnj55rEzCgjpJEKlD211Jj67WLDPHYkjOWYpuVpQ+KQ+JtMStn4hQKUKKxbQQMO416YInpQRxMZ8/ePRIf//738+yfGNjEt36wQdFtFosBMgHZsA0zdI0TdM0ODfdnCCCBO+dbUgOnj1rm/bBvQexWJ8xpm2b84tZ29jlclnXzXR7ZzIZDwYDrUkkhtYq7Cy8qIwZqsHm5mQ+n+/tXd/c3PQh7O9d29vfJ4Smqn7lK1/42U9+dOf2dds0oa1WF+6Tn/20bd3x4fGNprr79tvXdnYSvVEd8RRWvlrxYFCkRhsjsagyCwK0trXOKgXMkGWFViASqmWjFKWpcbZ1Tds2ddPYZVnOzk8fPzt8enT82q3bwgDMrm3EsKbUOUuKNBEHYO+AsW1aQkC0ZX02TG6Nh9uNrWv2g8EQCZwX67kwYjIZttXf+bUv/vM//u5pxRtbO4uz4yZgkV6fTjzZg7aptdJFMeTALKy0KssGWKzzqg5P73/0+rs50QDARNcgESY6s8631nvnlJE8TZrFsl429372w2JjJx/Or+1fz4vctjZJkg4SEWmi4BkFSQCQFUDwEou/BglZlkXN13vfNs14NCZFceNLkcDSlVEDiql8DCAGUf/whz/85jd/lZmTJI3JMU1di8hgOFqcnjet3diYjkcjDpyYRCkRDg5EG93aJnjPIUynm3/xZ9+xthWEO3duT8aTWte2bbUxTVNvb2+laeqDs87V87m1wVrbOjvZ3Hz99dfu3LkzLIZ/8Ad/uLk5vX37lm2bLE02hpmw5zaUq2WSJE+ePDs7Pzs8OEqSdD6bf/GLX8onO+OdG/lgVBjQzXloz0UFk6dJMSBl+r1jBYRjKCMhcBCt0xAcQsIuEKAhBZ4hhCAeEIXx4mz14P6zn//8E0x0luUi4JzTKo3mH++CUjpaY4UBkaqq1iqxrgIjdbsYjPaXy6VSejrdyqv06PhQgwAzEdzaGSvUh2/f+vjpWVIkN66953RxuPBf/NI7zWG7OD5WWmdFjl3B76rIcnEeELStTh9+PMgGu3e+6CSQIiSKxbnzLMsyRAbvl88efiRlbcvVycHTm8VkNpttTre63A3hWPRDRGLugNakTWptGz0HKKAzHc08AKiUIkRvXeCgtOqrXmOwLSnlmtZxSNO0qWpCfO212/rRo0fvvffee++9e3R0eHR0sLu7CwCTySRJs9u3CwDyPihCEAjBN00DHKxzzrVNXWVp+ud/9meLxdJbi4hG69FwcnZ6PpvPohesGIwuzi+Ojo7qpoo0euPmrbdv3JhsTKZbW621h4eHt2+99pu//duIeP3GdUNqPBicnj/7r//Jf4mCX/rKV6qmOTmb7e/fuPX6+3fvvjkYDAbDgdZJw5QrjxcP2pOHUp1Obt5yglonIdZA5yAs3lsAj+C980qnRJRmqXAIntMsJ0Lbtk1TN01drlbNqrw4Wz1+fHpwPL/z+i1A9MF77xHztrVawJiUA8dC2Eqp5XIFiMPBKDHIwQZfhdAUxaCuLUAAkMlwtFzOfduCcG6yzUH61fffBKLDi3o8Gjd6+OTp+XjrWhpuuuVSK0yzhIizLHFNu5xf5Ek6KApFHFx99Oijzf3XVbZpEsNEEhwI+OCJCFjENqvTQ181H3/08ePDkweHZ1/48jeilq8U9XUNhAgRyXvvhGO6YAiBgBBiYRlSsToOB29dtBAkxnj0bWt98NF4SYpSrThwoo1rm2dHx/rb3/72/v7+xx9/+OTJY5GgNGZZUde1tZaUDsxN0wxHQ0Vkm1ZrNV8unjx+8uMf/2g4LBbL5ez8wnk/3dqq68o69/G9X2RpOhwNV4vVfL7U84V3gRRubW0mWfrNb37rN37zN+u6/tGPf/Lk8eP7jx5/6Qtfeu2N10Ugz3OTZErTyrmqpV/7nd8rBoNiMHzz/a+nWaJNiqhZhDkEtiBhYIhWq3Z+Xq4W4r3OUhDNSI2t0yRlAYw7YSNohdayIUoTI8FLV7/BipBzTQjOOdva9uj49PD47NHhrEYDacqA1jnrQ+uZUTFD8IGUYhZjJLCPxS0DO2V08CzeBbtE0khQlmXwLknSyXjq/VmSpLPFyln3wRe/8Cu//nfywfTJ2er/81//QQJzWy43Nndxd0bi01QP8sS3pVYASknwCEw6QaWq5emzRz+78daX0aQhJkYQ+uBC40dJzq3N0vyTRwc/+vAX02t77773wfsfvEcIgQMigoQQAhLF0jbeuWg3ytMMAaxzWmuOXEouy0TFD6vVqqyqPM+DsNZaAJAUESli4YCEzEH/2jd/NTCfe7daLhhkPB63TXt6cry7e80kZLTKsyQw27ZRSgVmH8KHH354fHwcwmbbtptbW03bBA7716/PLi6SJFVahyB7+/uAeP/hw+s39l9//fXBoLh569Z0a+tnH370Z3/6pwLw7V/91Vu371zfv5GmuQBev3GDvY+en/F4AxHbLjeNkJQPslrN0jTVRnkf0JCxi+r0oV0tGE022ZV0iIyoNengA4uwAtFKW9eyiNEmz/MIHxUqCcEH571v29Za6531wS/K1ePDi0fH8839LTQZkAIkF0JZt1ob70KWoviQpUnTNHETndVqyVyoRDWtZy6RMp0PQNhb39YNIpFWw/G4LOtV2bRWkjQTB4ePnjx8+viNXZM1w4SrrenedJg35YJD2y6ObGubpkUWAirGZjzZatpmI8ulqjMksY4ZE20AgIVNlkAIy7L84z/97nf/6q/uvPb6r3zjW7fuvJ4kSWd/iZ7Xfm89rXWSJiyiAL33iTFFUTBzjLGHrgITaUWYaAAApDzPk9QYTKIFDj1aa4MPRlOSmL29a3pzvHF2cQ4i+/v7W9vbzvk8zS7Ozk+Oji5m85PTk+nW1o3r15uqnm5tbW1NR1l+9/XXOfi9vWvGmPc/+ODHP/nJT37607ZtBeDNu2+dnZ8DwMbmtGmanZ2db37rV29cv5Gm6cHBwQ++/8O9Gze+/vVvbm1tZWk6nW4Mh+PRZCMweB+M0loriKqy912F7m5zJD49Pd3d3R2MRooUoW+PH4f5U0SVFmOV6kApGiOIQB6CEw4+sNEqwSTWlUJE723wEiT0GykxcPDOtrU7OTs/mV/ce3ZuKckm02IwYgFABaCCZ2BPCEGxUlRVFUuIerFS2vmgjGIW751zTT4cSZZVK11XdWstapVnMRJDMiN/+sd/9M4H37SlnaTh3s9/9oXbt3PySJRtTEebW/OLs9nJUwCtjEqywe7u7vUb113bnp58UmSq9sdnhweTnVsqyVxrrXNpnmhSIPyzj+/dfeeDv/sP/3FZVQBwfHx640Y2KIoujCkWpgWMGZJxV14QyLJMRLyPgtoBSHTKFlmuCFAhgFICIsG2LSjUyrStbW0rzG3TPjk9rqoKEbSzTZEmuDkdT8ZVuTp+drQ5nbx2+3bTNEqTIjg/Pf35+dnWdMs39fz0xBjD3v3at75FSldNvbk5nW7v3rxz58H9h2+89hozmywty3q6vX33jbvbO9u7u7uj0bCuqrfefCcvChd827o8z6LxnUg1bSuAiuKmCxiipFVASiHGlDZSCt9//z0k5ZkGhnD+UX32MbgWsgkgHjx7tnXjDpmRcEDjUqPEU/CubWtFlCQJEIGwOCYhF7zW4lztHQsTMJardjZrP3508uDofLqzoRUgqcFoA7UEhizRceOMtm0QhdkHCTEg3jkv4pIkSZK0bludWYHAAlqrjdEGa6zadrVceeeSRLflEu3sk59/Z2MyfXLwVLvWSPBtDex94CDsQzPe3l+cn093p9Pb74xHY8X10dEvCFErs7Lz46P7gZJZFUgbbfTtO7c5MAu8+4UvKE1pmm6TctYxAyqKaS4AYIwJzIlW2uj7Dx+Ox5PNzc22tXEzhLpcNVWVFXmWp6vV6g//8L/72te+Vtctkt7Y3ETA49OT8XicZ9l4vMHM6zKDw/Fkc3OqCPU/+yf/dDKZ3HnjtSTP9/euW+v+6A//+y9+8QvbW1vX969fv36jqeu2tWmasMjFxcUnDx967w6PTu7cee2Lb73FApOt6etv3OUQxuMhAimlRcCYFFBIxQIAQiOtUFnnnWejE0TVYd3gARFJoQJm4VgPKO7USNGcyhzEuSj5BcRo9v78qC0v5rM6mSZl647Ol3eDLszA23o0Gkm1sI1j9kQECKQUCESjRlPX1tngsK5q771J0qZuTs6PT87n3//hgyCkdRJzb1WSAjgRKKtGEaRpSkgCLIjeBfbBomJmBKqbNssLChy8Y0JlFAIq1EqZm7dveICj49PZ+WmG+NoNPD9fzI7uDwjvvP2GTkdpmgbvvISmqVKT5qMdhmLj2r7JhtazBhqOJuRtu7ogtAcPP7q299rbd9+ar+oQdwsEUEoPh8P5YuacT00S95nyPngfiChJEmvdL37xi7ffeouItra2lNLRQea8E0GT5oJaZwlrBdp969d+K9EKoErzYjgaa0WbW5si/W7iImmaOuezLI2B/Ry8fvzgvr127ez85Prt23t73zw9OV7M5/c/+sVyezacTkGr/RvXN8bj7//gB2R0kefZxkQhbk23b73+OjMHkGI4+uSjj39x7xdf+cqX79y8E5iD803bkFbEEHP6lU60Mmmu47ZJIaIQ9t57FvFt66xPsxSQou8wYjoWcM4H6xgkVppKKfjqol2csXONbQeajg4u7h/P/u7GHosE23jflLNTbhsiIKXqph3kBRACB4Rg7XK+mBk9TNQAwIrw+ezk2dHDn3787GJRpcUAlUKlvQCSNolh16ZaFUUehGOlASIhZWzbxgqhrW2Y0GQZszdatW2FkBqT1G5Z1XUlONja2tq/k4y3L06eqdPHhVGLZcOAaaKy0UgXmee2aWxVlmoj9UEwK5qAUtdKPGK4uJiH2hokxDA2sjp+MhhuG50NimFdVdpoBFgsV96HNFE+BCLi4LwLirQ2qJQ+PTlOk6wohswhyzIiZa3z3iml2taRMvlooo1hoOFGMSgmGmVjo7Pca41EaK2Fbh9cEBETM4FAQggCqDcno9PT4yRP77zxWlFko2Hxm7/+68Hze+9/cP/pow9/8Yu7b7+jjXnz7XezItvY2NRKMUtT1966uDVaotR0e+uDLNnd3XPOBmBBZA7gA2pNqKIUFgDv+y3KQVgCkgJkRaCVIqUSkyARh7hrJAIDB8/eR36ktMrS1KCtFuciK2X01u727OL48OT4m7/xD7QetvWFkZpt3VQL1zTetbHIr4aRAEKWi63s4mRxsdjbn3oPSOn5/PT0Yvbo2en3f/KAEtKZ8SGwpKjHZEZM3oJFrbMk9bZtQzA6CSEEDi7EnQaRkZZ1Mwxs0pSYjaAosiQqV1Q1FydPnx48u3b7zcnOfm2DJlqdHWwkvrVegACVAAfvmQVRiWBZrSQIO1uSIgjclO1qpiQkOhCGzVxzPavPH2zsv9a0HpC897FEcpZmWptoTGYmoxJEIp1onaV50ThfN60ACwdmydIUUHOAwaAgbQDQeweIZxcXgzR12KUpIkIIEEKsFRNiSbHoF9JaBx9ijIZOJ8Pt8eD2ndvjzfH3f/iDs9Pz995/N03zRVvv3bzx2ttvK51wCJPJRpHnIGitq8rae+edU0o3bauNuXnjVpKY5XKJICLovIvJf8wcd5fxHFzg1KSEKqZIExoGEHAhhI3JBK9saRhrbDEzIhitSKlYhNE7T2jPz48T50gkG2Rbafb1reu333+/KttRMRQYlGeLReWUMou6RpE8S5Y1IAIhhNKfHS9agWJYzOfLAOp8sbz/4OivvveQWY0nA1QaUCUmRyAkA0rlww2E4AR0Vqg0JQHX2tC2SZEgonVWKwog81W5P90iIGTx7AUACNumaldz17gwnS4BggtMqR5fG6X5xflsNpulyhhjGKSuyyIfLJeLe5/cs3UzyNLRaJxo4rZS4gl5PBn4RiQsQHSWp65Ik+G2MoNWJFbkKIqhVtp556wFIOccEnEbggtpkl7fu16W9fHRs7qqXn/t9cwkg7yw3rFIWzVK62W5WFYlAlycHnrvRoPBzu5uNCB6HwiJSYwyiGitFRFjTJIkVVUbo/UXvvG14IPWOkvT737v+0U+QGVGm1OdZkorDuycV0RZmkXxKSCDomBma63WemNjIz6mbdumqRUSKsUMwMAoQAyAAhx8jPsmk6RKkUTDOEie5bHIQdS3AcRbx14ICTDuRM5x/z9EJKWAbAhxd2MlDEapa1s7HGywGIpR7ahmI8kIjaFWW9tm6eR4sXr25NEHb95JPc/n9ubbbznvTSarxfzh48c//NG9psmLHPIi0yYZ5MPRaNi0dllW2XSotEo0cnCUpHFDz9RkOg8AAMIDEO+dZ1etyrKyySSrq9ordo5Xi1Xbtgp5OswuDu638oSSIhlN55UfCWI+Vo032QAQz89OqqqdX8w//ugXn9y/p4mKPEtQbYyGN/Z3NQoAO++HifEcjOEiDeRWmQzqYBSlQFQMBqRV21pkVkTPnh4OiqHWJk1zDiHPCwBItBmPxtev7SVJUq3K4MO9+/dn80XdtGmeg4bHT59OxiPvbFWuXrt1e2NjwxhjvVdKAXRxIlVVI2JRDADQOVtVZZ7lOh9tFFmWZdloOLp1502TplHpE8QQxDtnrR0MRlrrtm2jS6VcrUREaW2di1FmHIKIKNJxaziNGhJg7ra4CcIskKaJMUrEty0DYZZlCOBdaKoSEby3trUCoFFxhE1IInGXXlJdljcxGjSD2uG0GIwnm9lgtGSs54cgCoprxAHRrKp2uTpcleXJ8XlT6cWyPT9/fG13YxDK8WC8s7u3rBYi+hefPPju9398vKo2tqdBBAkTY/IiD8FLouvWehYN2DpvW0vKaK2AiIxJjWmbRhFI8EqbDEGRKatqNBp6bwNB3bgkyUUu0jw3ilRVmyBN5VygZcOPnjwZDoZ5ln3y8CkQLVarZVU9efxktlyIgLONQ2mdD7ZKlAiHIksTvSNK5YNMEZblEsgI8nDi03TjHMnr3DnvlquPP/rw7XffvnF9TytTVTUiOxdKgFQbrWh7un18eJAlyWhjxM5tjMZVVf/gRz+aLxb7N68fHDxLUpNl6WJ2gSI3b99Sw6GwxAp6hNQ07Wq1VEoZo5VS3vvpdOqc04NsMJ1OmdlZHwK3zuskJQrGJFVTlavFdDpt2qY6r6u6ii4YZs7SNAZZRpNICEERkTIx9CQxBhWJBEVaKfLBKwXamGgSNYlBRYEZhJfLRYx5atvah5AlKTNHMzwhEGghFGbpGJbYgIONvXJ+uKouSK1AmSRJwK9ImebsMZIpNAyyJIR0tDHMi8G9T2bNeb21tY0gHvytt+8mWTLSGw8ePX70+KxuyORDY/QoS02emTQFIkQYjkaOw6qs2yYQstF6vlgNiiIvMtIJkiqGY2Av7JnZWcdKz+tm2DSbk+nZolIq0cpsbm4tVxfWB+d809gHj49bGCw9ns4q7+XWrduDYuicLa2czpqgBiandnGxtbFx8/qet+7Zk0cPnxxujAeEMF8ux+lm8HY2u2isrdqgZxcbi4vJ9rXNyU5pQ9skjx6fnB7N8+IJIe7tXc/y/ODgYGt7J1Eq7pi5mC/Ojk+ePHl0/eb1m9dvGGXeefvtvev7P/7pTwPIu+++TYST8SjRlOX5eLJhWxuCb9smZlc2TcssIr5t2sFwECuZcmDdtJaQgnDrPAgopa213jtE0gqv7+0xy7KslKI0TWOdFKVUhCzddnsY45dRk+mM4oha6agHKaIEADAgodKGSMfdhoVFOCCid16ki9nGGHcJgMJdqi5AF7UZs3lRpaPNlRmcHj8UcUSojEqyXDzl6QCCbazb3RiMNvKmbcqyFQXL5WI8zaZ5kRaFHhZAUNX142eHzw4WrVOEidHJeDDMh4NsUJR1ZYwm0k3rl5VNTZBg8yQBACCdFUNQCSAyszFZ8NaFtmHxqJY+nC3L4WAziIyLAYZwelo+e/akXC4Wi0Xbusbpg9PDlahla5VKrCsHgyEAlU1jlGZrl7P5G6+//fVf+dqNWzcGo+L0+OhP/+UfHz/7xWy1YoRMggqDwJqBBFJvV+enT6/Xx3f8WzuD6Q8fHv6LP/yLB0+PPpi/e/f1u/t7+/c++eQHP/hRMRi89/77+/t7Ki+Wi/m9Tz65dfP62fHJxcnptWvXNra2S9uOBoOsyB4+erh/fc+5ZjjYSIzhwGmaLhaLo+PjaAIwJjEmicq8975pGudckRd679oeC4TARmsibJq6tnY+mznb3rlz5+JiVhRFmiQikuV5DMWNBR9jdFgIgYiUUkiKUBFhNPMnSQqILH1xI0IRH3w4OjhUioajERExYpZlKifmIBJ+/OMfF8Xg1q2bzMAIsU5A3ARZmImIwSv0itRk986zRx9PlX727KGrV3t710AgDIe2abRSJkvGWT5K88Eb+8cXJfzY7u/eMplJ86Qoch/8sip/9NOP7j14GlCZNBf2y/nct84okyUFA1rPGmFRNlqxMWQBq6VNy1rlYSNTkKXOts4jiPKigtJam+29G66uKxZlkvGoKBcXea5u37ru3bb31nk+m5XjrfMgqrLNZLJZDIcikpjUtjZN87qss+KddHD94cGzZd0ONsbFoPjiN3+jmt/5xc9/uJovZwXkQW+N98bj0WRjohDPzg6ePjn1tdraPLo1NP/H/+W3Pzm64HyUTXaSSWrmye713TzLUMnx8cHtW7dXy9kPf/T9g6eP9nZ3jdFzY7a3t+enJ8v5/JOPTrav7dy+dbMYDgMH50OuFQjs7Ozs7+9fzGaKSGsTnT913WgdNSGFhDpNExFw1iJi2zZVXU02JqNR8cnHvzg7PR0Nx4nRaVZ0WwogIhEIhGCNSZDQOxerhATmWCBPAWqtMGbbBiGFZbny3g+KvKzKo6PDzc3NLMuyLCOlmEGR0lo1TfXOO+9WVYVIWRa3jABCbK0FwPFg6H17cny0t7eHHJLh0Orhf/vnf7U4evTOazca6zbHo3I5J+BBnhoxzcI1mPhi8sbuZHH39lt3b6JR23s3UODk0f1ffPLJj37yYRvsaLKxu7OhQDQqFnTBH5yeNiBFnhZpnhjD4AglL4bnJ0sQfnB48P67b77+2p0sLUJwCgEwsDhCSpJMAjTMW5MNZrexOZqM79q29sESACoSosa1wTpBNqSjWqB16q33LMPR2DPUYXB89j/+k3/y/7aYvf3u+x+8/96gGH/lW7/15PGTgydPJ5Bc1AG0TQZhNCz2bry2nF88evzofKb2tqeTDbi7m+vJNGSjAP7G3rXbN677mKPD7Fw7ngzffOuNZ8+ezavV5nRT5ckPfvrDnd1rv/XbvxljLMkkgQOi0lo7H+JWJovFIoSwrOuiGBCpWL4qOvpTrYhIV1XFzN4H5+x8MavKUhlzdnZy48aNrclW3NsghOBC0Fo7F7wPUS5ub28vFouiGKRpxsxpmghC8IGFvReltNbaO2+tzYvcex8CpyZ96623Ou8dgPdehDURMzdtY4zZ2p5y6Cp5RXWxGAxOTk6quspT09TVo4f3J4PBeJC98+VvnqyqB0cXf/nh42mhx8MiJ37v9Rup3lxcLOezk5qNGW/N5oiunG4OdnY2SWnxjoM/P78om3Jze2N7a3Jjf+fu3bt5ara2t5ON1/7q55/MqtKkJk/yLEkHg3wyGbXW/fRHPz989nT3+pYpxvcePMqzfHMyHBfJfLlShpx3HIL3vrG+quvGt5NBHoKXwIRKKY0CIfiMFOVKQFRXod8IKg+wMd0YjMbL5UqB/9/9+//gS19+6//2//inf/bnf/bg4b1ikBlFaZKcn540jW/q5trmADRZ8ZmiPM1u37n94MH91cOn35iMR5RwXQNkOBhUSWK9FQkf//xnN2/f0Vq74Fvn/n89ndmTXdd13tfa4znnTj03Gg2gQYEEQEokRdqxGMtyOU45satSKjsP8Usq+ceS11TlJVWJq5yyk0gpy5KsSBQhihIlAI2hGz337TueYQ9r7TzsSz33W9+z917D9/2+ole9/3sf7e7dAineLishxLzrEDnTFH3niJMA2WDOqM+afCSiBCnGkIRGqVrXTafTvd1draXqOleWBaIAhM2NrcIWvnPbm9tlUQWKgEIp5bwHAKG0UIpjHK1toIDFcln2Kq01JRJSRCIiChSVUimtptBKqcQMlIBT8F4q4dpusZhvbG5+9unPHj1+pLRc1G6+mGqlbGGc67Qy3rvJdHprd6/ruuCc1dK1tcRiNBrF4F+8evHBe4/X+oNvffyt1y9e/uOPnt/Z2ZHx5q1N/P337i+Wy66eTW+uPBY868aT9oMP/nB9MJQgQ7ds5+Pp1RvvfBd4Q8NgODi4//b9d95N1vY3tvrD3T9/8JhRgMToo7VFYXX0vlD6vQePXr88BA6mVIvFNPjOM37x7KhezFzb7GxvWC20MdoWLvjmepxcpZUsi9JoSzF4743VKDQCAgpttBQqCcVJqErKwgbQ5WDDtTW13ScffmNte/8//Zf/trG9t7NzS6J69vz5+eXkZ78+/LKqtkr8vffu37u3e3tnm3qVMWb/zsH47HS6bLVdN7JCEAoBKpVa6gJubW0lYKHkYDj87l/9pSmtMtIH6ryPkAQAKknMCsVX4EpiYGW0977f6xFR13UbG+sC4IvfPI0gNje2h/2eNvbq5kYi4qff/5useE+rRGJABClVSlzXS61tNegbbQCRE2SfCEVmJhSQOOWGKcYYfJBKCYGAQgpMsNppYQJMEGLoulYgltaenJysra+FEIejESVKnLz31hpiokgxhLIohRBV1QvBu7YFjtbam/H48vKsKk3TLJvFPHlKnE4n49oHRfyNrx3crpZi9uzy4vL89GS2rM1w63raFKb8kz/+0/vvPEzACRlSbOrl3MvPf3t0dnGyuX3n3tvfGG7eHqxvFb1+DF4I0Tjfdg0gaKkKY6c31wbw8uzUNw3F0F8f2X4ZQ9ja2nr2/HB7c/P0+Oj87PVyOa3Kcn3QvzUY1OPLQVWgSEoKpZQ2UkpRlZUyBoXU2oKUUmqtVQKMnBIAEStjgRFRJETV79909OTLl/O5L4vezWT65uzs9Ozs9Py8nUzWLW+t273bO9tbW2vDQaFVZfXO9ta9e18ry55WFmwZbKFMeXOzaF1ondPaGmVccNLomKJUGoVggowPjxQggZZ6Op0U1hbWckrX4/Hx8fG7775blpUxuq0XlzezpIumbiXA1dXVm+Oj7/zRt/Fv/+t/FkJsbW0XRWkynAXQe4eIxBEgaWtQKBQSEqAQmUGehY6Bwgoky0xMWutc9hqjfQje+bIss6k7L96EwBBC17misGVZpoSReLGYV1Uvv4yj0YhCWKUNAnnnE5MSmFJ69vTpL548Ga2Vd/b3drd3C1OV/YEdDkBgwcFPr05//Q/LN58dPn85ns5l2Zs5MR63H3/9vXcf37/71v76xkZRrkGyqJUqbCJwjrga0WBHFusYsZAihK4JrdDKx4BSuLoVCULXphCaZtnM6+VipnsFam20nc0WSpm7d+8BMnN3evbm6Zdfnh++erC3ZwVPZ+NIjhOXpTVWj0bD0XCUR2sEwAy2LBFRIiglrdGJeX1tzdoilyzaarTlPOrD19c3kwUCCClC9EzRu3hydPTzn/3j0fErpdXe3t7uzs5w0L93987XHz48uH27UJqVpKoUqjC6rFt3fnWjdZnHsVIJxpQgcUpSmpQAQcQYmQgBb8ZX1prc9/R6vcMXL+7ePTDGJGYhUuPC0eV4MVten5+/eXO8ubHxr//sz/An3/vvxhQZcqaURhTMnLV8AElpKYTMXjyR/5QynDGH/tFXE6BMshd5CSeF8N4nSsSECaSSy7peX19r21YKWVVVngDw72Kuc/R3yvwUWM7n2UZNRGVhifj6+qrqlVVZaaFUTmGRCpVsgwcKvJx0kwvjrp/86O8+/fTJvG5A916eLQHkn//x7+9tlbdvbezs3iqKgZR6tDGKQmpdKlE1Zqh274MoQ9OOz89Onj9LCsDIre2dYa9vjF3WDSVWKBHZGO28CzEwovehsFWITJGrXjW+uRYStFKXZ+exrfd2tlvXaa3KqogxTKc39bK+uri+OL94+vTwenzduS4l3vgK2Pbx++/f3hxybO8e3Nna2ZUCBQBL04lSFtutC0fHr+v5vOtqTkAJ6rp99frw5Yvni8WCKPV6ve3tTS3FO/fvffjo8WjYrwY9MxwZU6BUnkUUZrF0ru5icKhACIwcUAom9I7arhuPr7e3twXgYNBTSsyms3xDZgdEYoqeNjZG88Xi+OTi9Px8sZzv79958LW3qqrCp09+wAnqZT0YDBEwJeTEFClEr7W01sgsUyeWUuaLIcbonCeixEkbbYxBRCJCxJQTkHOHB4ACp5PpYDhQWhPzCviVH0pATHlaTcAMgKukUoCbm5urq6t7d+8CACcwpogUelWZEggQiRkQiElq6bwTAFTP+5KHlfiH//33P/zhD1RRfPytP1wE+fz5oXLznb7eGPa0Uo1zO5trvUFVru9Uoy0Ay2YE1drl1Thx/Ok//ej69fG9e7elVmVZHR8dl4P+19//YHv3ViDOdpJsmy+qUmtLHG9ubkaj9eFwDVGcnZ4qrQajvhKYiJPA7GdCTBxj8FGAPH1z8r3vfe+9996bTWcXF2dn529iDL2qf2/39t76oFRh99b22w/fWd9c18qQsE5UAYpef2QL7b1//erFm5M3y2bhnPPBn5+etk0bOtc0DQIYLTfX1+/d2Xvr/v39O3erwaisqqatpbFRlaArDVpJmE4nZ6dvIsWyLKSQ3mcjIiqpANAYGYLruq6w1juvtQ0h9nv9tm6Oj14Xhdla3wIpQCup5GKxHF+P8eWvf8pEIcQM/oyBUgIptZQIQCmx0hpotTCP0bVt07YdEUkpEFdTH6WUUpoZBKKUMgForXJAt7U2x+BKrX4X+Z7/uZCSd44oZPAsSoECtVSwMiiJPGfS2uY+kSjE0HVdkyu79c0tbQpOyD5QPT09fhljvHV7b2d/F43qQCOY7ubGTy4NxhDCeDKdTq7X1geb+/ertV1IyofofDg9PTHWfPnlr968ONSRReDA4ZdPf0OU/s13v/vg4UNjCqGkKaxUChCJyTtflMV4fP3w4ePg6dnTZ0qrR48fBeqiCxRJKskpCYSubbRUMVIM5Lx79fLVhx9+KIUIsZsvZsfHR1fXk+n1wi/m7z6408wn+/v7n3zn29IaVqXsb4Hug9BSoJQoBdbL2enp0dnJ8XI+u7keUwgUwmQy6bJgi2lzY2M0XL9zcPD+N7+ZErpmUVZWDtZ0NUKUAhBSij60dXN1ebZcLow2QogEfH19E4Lf2dkkCoPhgAPlnEjngjW2rZvJZOKdywsDZfT6xnr2xOKzz3+cIeTMDIjBx8TQdW5zY50TheByxEqMRBQRgThkfqB3TmsthCDiwtoEKKQSKLTRxlit1QoziCi1il89dkorTqle1sEHKWUIPkZvtMasIJMy+9+KooQEs9m06vWEVEbJ+XxOlEOFQllWIo+2OCUQMQQtgEKo+n0GjkBSK1QWWFba6kSJXIyBszlVIAjlCHI2BUASKTVtQxxd1568fnV1cj6fTy6vrgeDwa292/3R2trGptZaaWWsFVISs9YWISmtyqIi4rpeImDZqxIQMHVdWzetNaZXVbPZtCrK8fjm6bPn//yTTwAxD2BPT49//Zsvtre3Nje2927fPz9+c3L8aj67ubm6/nd//df33zrAYlBu7LZJJUhKYNs0hTFAZI24PDt+dfi8axpM3CyXdd20nWudCzGUZTmZzHwIf/lX/7Ysi/XRyFit+gPWJQgpAVNC4ATEiLCczV++fnl9fd129Xw+397ZRkzL5UJLtbu13e/3KZKSSgqJX60ciCIx+xC0VtpopoS//Mn3BQqlFQqMITrnri+vtza3h6NBCK6ul/lnM9YmzhKLVJSFRNE0TVb6ASBRUlrZorC2zCaSbFHjFQ2DKZKxpigKZp5OppGitQWtdvSAK3IzGGOstULp/NSlBCEGSuzaNjERkdI6eJ/bFilk2za2sHmupbWRSsFqd7/a4EuhE9FyMUdkShESgpRG61z45zWwRMFMdVMnTFIKikEwkQveeSJWRVGUvX6/lwCFlKtln7EhREQUApmTkoIop6lQjCGEwJyMUkVRMDEw/+rXv7p1+/ZgOMp5wiGEtmtj9EpJa6w2VklJRD6ExWJ+dvzmDz7+eLC1U23eXsYIyFpKkQRwahaLSG7QM1en5+dnJ8v5BDmFSIFAKhW8c127WCxev361ubn1+PG7O9s7Dx8/loMBKwOA0YfM1GJiDmyVms9mX3zxy8ix6lcoYLGY13V9fXF1a3f3a2+9paRUUgGA0sp7z8yYgJjbrr26ON/e2anbDp999mMmThlWkYg5KamYY9s2IfrsgYUESmtEYZSyxj4/fO6dP7h/kBLlrHUmEFJoY6TURKyVzGEOv9tkaa2lzP2dn81mRGy0TpgAQEmhjc51tFLamMKWljmFGCgSM0kUnEhlUyNBCDELoH7x5BfOtR999M382YEQWtuVokgqYEYUTKlr2+CdkCgkMichhVIKECEl771YLUsEMxFFXOWBkxYiEWqrEWXdtr1ez3uvTF5iRGstgljxyld+YeLEzNR1XU52lyjKoqBAFGNC8BSX9XI0HCFiiMEYWxbFcrls29ZoLaVATNl5d3z0GiJ//K1Phlu3uxC1znYc6pclx9CFzoV2UFVnx6/buq7KMgSKnDKtW6AIwS3r5cX5RVO3dV3/i3/5p3ffeQRGJ+KLiytlbVWWxCQ48WTWtV0kury+arrWFkVZFkJIpRWlJKXUUiaBxhgl1bJtYgxKSIqEArUSFONkMsXPfvB3AJit71IACszKjdl8knOvpdRSSiGkUUYIkYiXy/nZ2blUsm2bra3t9fUNomSstbZQWscQUaBUSkkZI0kpjNFZIU+RcpRQjD4PnIhZ5rB0gNzTWVsqs7Jn50VbDAEgpcTT6Wx7e0dKlWv2GL0QKiXKYWYpj55WHSIwUQyRKTExYlrUi5vJ2Ghz//5B13UnJyd3797llDKsI4QghJBS5fOJSSBA17XW2qy61Np0nUspcSJr9ConHQQxZ+Y7IsQYpRTeeUSQSuWQteCDQEwIgWK2VeV02HzSgEFpBSlSjEIAILdt1zbNbD67vX+3Gq4bZaQQRHQzHq8NR1WvZA7z6c10NkOEyc1k+9au1Ob16+Pbe7dy2qxrG4A06A/bpj08fAEC3//o47WtLYGimS+a2Twl2NxYd23tZ/Pr8XgynTJiNRiM1teJI4CwRaGU7rznlJquK8pSCOSUMqWLmbzzCMkY89vf/hZ/8cO/z14ygQIwKZUJCj4En538zCwkaqUESKP1sl4WWgeKresESiEgl8+9Xg+EREClVUpptUFFQBQxuhB8SklKFULQ2hLFSKEsi8R56aGz97Zt2+DDcH0NIAnAXHh9laOIxAlS0toQpRAcQLLWKqVXCZyAKFf8wBhiTmZTUiNg5Ni0ddO2SsnRoD8ej5l5b28PAGazmRCiqqoMS0wr8a9AIWLwCVLXdaenpzHQw7ffQYSEnF+poiiZkxBqBXdKiYiLouAUiSiupFiwSjIWSETee2ttFjYBYOZQp5Rc23auDcGvrQ0QhTFGSEEpeU/WWO/cF58/GQ1HBwcH1trPP/ssEa1vbp6cn+3evrW1s6utnc8XUikpRWKajW/Oz88eP3qopXHOdd59/stffePDDw7uHXzxk5+ayI8fP0ZIP//5p0+ePBltrv/wn378r/7iLx48ekdZ27SttcVwOPKdPzs7JxSbm5uDtaEQoum6oigEQIhRACYiYg4+KInIvILiF1WJKFIirQ2iZAYEjDEIJSgG5qCEtNqGGJwPiDIy98q+1ipGZkCJ6DpnrEmJcRXxFNq2qeuF1hoQpFAMKYSYIPngmGK2TVhb5A+OKC0X9WB9hAAhBEShlNJCglxxk0IMQjAAFrZMACnFuq6N0avLExMwR1qF+og8F0dMnKwpmdPV5eXLwxd7e7du7d3K8RD508mPETMhCkBkThkuJ4SUUjsXri+v3n7wdlUUzrvMsEZEpghJhBCEFAlAYJ6AZIKPoMhFUcTs6JNaCIWQt80ypZVr1sXAFH0M09m8aWoXXK+qnHda216vL6Rwrl0sFgB49ObNbD4/OT42pnfw1teaAPv3HxRVMVk07eV1hqJQ8MPhsK7b3Vt7LsQYWSm10dt6/OjR1cWlBDx8fvjyy6evXr1yrnvx6uXrk+Pj07Od3e2l6xZtN1Da2CIbUonS7t6eNvZmOlksFlVVaW2YgYkFilUYKqIxBn/6f/4HgJjP55Pp9IMPP4iRsukOMUMdRQKYTifW6EG/lxPpmqaVWiIiSklEGdlsrWVmRCGF8CEoKeq6rhcLW1hIrJQCBKUMrfRigihmMr/S1ntfVT2ppTVFLmKYmSPl+MVM2GImSMgpSbkqrbK1dnXWEwghEsJqLgmgpEqccgcRY0QhYgwxBiZWSuayPRAJRGttWvFPIE+zAEViyCAz75yUUgqkSFIJZsKvgsmz3DPEmACISUkpUTCzMSbGyABaqxhinkrk5zIxN02bpxQpJSFFjCQgWWtjDCH4rPdLCZTS52cXPvi10agqy+VyefLmTdu2Z5c3RdXvfMeJlVKRgo8+L6eX83nwfn/31vvf+Ppw1PedK0wxWlubzRaBYvCh1ProxYtXr14+f/Z8PL0xRTEYDj766KP+cOB9KKtic2OzPxikBFqptu0isTZGGaO0zdJT17QosLBGK4mIMUb8f//rb6SSV9fXSqvt7e2q6mXFEACk/MMD+q5j5pubGyHEnTt3QCgBiWJcNHVR2KOjo9v7+2VRKKWya79e1sF3qzEzsbVKSqmNSZB5SEIplRInRKWUkiYhSKVWJlxgLfXZ6Skz7+/vr0B/K04SpJRiJETIDLcYQsY8AqfMGmdO2Q8VOFIk5zurbXaSIELwPhHHSJlaSsxKa611jq3/6usBSOhd0FKu0p8SxOh7/V7uY7OjpWlaAByNRlnEmFEySkmOjAghRFUYBEAUKTEROed+Z0fXWmdIAwDGGIFjvvzyo6+UZqYQyDvvvUfEqtcDprIo35xdnF9eHL05ubi69t4zEUNiJufbxMAUm3rZ1d3erZ3/+B/+/dpg1HUdALx89fruvQNbWEoEkHwIRLGuayaqyqosi8TsnQcEtZrViVz2zhe17ZUuxMWiGY/HTNwre2VVjEZ9LYWUcj6b4c//7/9ERKlUpKitCSEoIa2xzruiqGLWhQBnm6NAVFonlM45KQRDUkoJiShQSSkAnXOz2byp68LqLCipF4vNzXUppS0KHyIlQICq18ulgRAKRGZE5mJLEMWb8YSZtdZGq6IsU0pKqRgpxpA5SDEG5qS1MYXNjXT0IbMAlVJSyZSAiCLFTBRAgBCD0RoBQwjBB6WzuQm0MQmySl9476UUKERipEgiW0FiTERlWTjnYgja6NOzs8V8vn/nTq/XE0IwJKmUUjoxpQTR+xhijLHolUJIY3Tu6ruuNZkOaUwMAQEYUsyGPYpZDZLtx1prJSQRtW2rjVFS5sFB9JESC6Va152eXxwfHXVt13Rd29TNYvby8OX1zVgp9ejRo+/80bcfPHhgtBYAk5vJYjafLeZlVUqtvXN10zBT5Jjrrd3dnWF/YI3J1VpiFlJIKbu2Oz07W9/cMKYQqFwIUmottQ9tryq875jidDrDT7//t0qpEIOQUigVYzRKC4Fd505Ozra2ttbX1oQATJAgKamIuek6YwwC1l07Gg0RIReDAiCE2HVt13YxOCllvVg+++2X3/zmh0VROu9HayNjS5QyG4tQiBBibpxCCF3XSSmNMZeXVzs723nGnetxgJQPHBHlHRpzqnr9fr+PUjBR9FFJmTvqVTkMSQjJzIlZa+WcY2IEEEI473MWzPhmvL+/nwQqqThlIFxSUgJIjsR5OZOYQkRMUsm2bQ8PDw8ODsqyypdfUZaROSFIxJRS1zmO0TunjbFFAYjW6GxWijFaa2KIwKnt2ouLi9FwNFgbJQAlYD6ZJhC2LJVSebGIiLmhWZ2chAJlpIhScAIUKssWiLmrl8vZZDyZXFxe7O3v3d6/m1GQWkpMMJ9NXec+/fmnn3/xS0AxHAz27+y/OHwRKVLiwXC4Nlr75A/+2d27d0PwWcfX7/WIOUaSSvngQ4ghkDJGSkU+cOIYPUePgEVZ/H8T+rxlhAOjKgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "PILImage mode=RGB size=192x120"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "im = PILImage.create('dog.webp')\n",
    "im.thumbnail((192,192))\n",
    "im"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "1e2cc214-0f0d-48ca-ab66-81af9eaecf3c",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "def is_cat(x): return x[0].isupper() "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "04a70a85-1653-4dc1-bcb7-1c28f4440b6a",
   "metadata": {},
   "outputs": [],
   "source": [
    "#\\export\n",
    "learn = load_learner('model.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2e85fb54-41b4-44cd-81a7-3b05eeeba187",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "('False', TensorImage(0), TensorImage([1.0000e+00, 9.1793e-07]))"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "learn.predict(im)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "62e898a2-9121-4192-a90e-04f089aa7157",
   "metadata": {},
   "outputs": [],
   "source": [
    "#|export\n",
    "ategories = ('Dog', 'Cat')\n",
    "\n",
    "def classify_image(img):\n",
    "    pred, idx, probs = learn.predict(img)\n",
    "    print(map(float, probs))\n",
    "    return dict(zip(categories, map(float, probs)))\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "ec02e373-4d17-4dbd-9fc6-8144d26f6333",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<map object at 0x7fc01fc5bd90>\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "{'Dog': 0.9999990463256836, 'Cat': 9.179332778330718e-07}"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "classify_image(im)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "78d206b8-81bf-4f5e-b14d-ae1a41f9fd7d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<map object at 0x7fc01fc5bf10>\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<map object at 0x7fc024d63670>\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<map object at 0x7fc024f96e30>\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<map object at 0x7fc024f97bb0>\n"
     ]
    }
   ],
   "source": [
    "#|export\n",
    "image = gr.inputs.Image(shape=(192,192))\n",
    "label = gr.outputs.Label()\n",
    "examples = ['dog.webp', 'cat.png', 'dunno.jpeg']\n",
    "\n",
    "intf = gr.Interface(fn=classify_image,inputs=image, outputs=label, examples=examples)\n",
    "intf.launch(inline=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "e38e5be8-4f71-4027-ab5d-b9e5027de050",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Export"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "a2ee2380-20c9-4236-97bc-2a8ed423228a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple\n",
      "Collecting nbdev\n",
      "  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/f9/e8/107f97e160f270deb04ba16a9f11bcf860bcd6f62e40b369a8444a99d129/nbdev-2.3.12-py3-none-any.whl (64 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.8/64.8 kB\u001b[0m \u001b[31m1.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: asttokens in /Users/qian/anaconda3/lib/python3.10/site-packages (from nbdev) (2.0.5)\n",
      "Requirement already satisfied: watchdog in /Users/qian/anaconda3/lib/python3.10/site-packages (from nbdev) (2.1.6)\n",
      "Requirement already satisfied: PyYAML in /Users/qian/anaconda3/lib/python3.10/site-packages (from nbdev) (6.0)\n",
      "Collecting execnb>=0.1.4\n",
      "  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/fe/ae/b16271d6cc0775f7b81e13dad9a9136cc0ca597402a2738a0faa8ef9eefa/execnb-0.1.5-py3-none-any.whl (13 kB)\n",
      "Requirement already satisfied: fastcore>=1.5.27 in /Users/qian/anaconda3/lib/python3.10/site-packages (from nbdev) (1.5.29)\n",
      "Collecting astunparse\n",
      "  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2b/03/13dde6512ad7b4557eb792fbcf0c653af6076b81e5941d36ec61f7ce6028/astunparse-1.6.3-py2.py3-none-any.whl (12 kB)\n",
      "Collecting ghapi>=1.0.3\n",
      "  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/60/71/064560201c434c22c9f395878ba0f21f9ede8169e61c1a109f26a377bd5e/ghapi-1.0.4-py3-none-any.whl (58 kB)\n",
      "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.7/58.7 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
      "\u001b[?25hRequirement already satisfied: ipython in /Users/qian/anaconda3/lib/python3.10/site-packages (from execnb>=0.1.4->nbdev) (8.10.0)\n",
      "Requirement already satisfied: pip in /Users/qian/anaconda3/lib/python3.10/site-packages (from fastcore>=1.5.27->nbdev) (22.3.1)\n",
      "Requirement already satisfied: packaging in /Users/qian/anaconda3/lib/python3.10/site-packages (from fastcore>=1.5.27->nbdev) (22.0)\n",
      "Requirement already satisfied: six in /Users/qian/anaconda3/lib/python3.10/site-packages (from asttokens->nbdev) (1.16.0)\n",
      "Requirement already satisfied: wheel<1.0,>=0.23.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from astunparse->nbdev) (0.38.4)\n",
      "Requirement already satisfied: stack-data in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (0.2.0)\n",
      "Requirement already satisfied: appnope in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (0.1.2)\n",
      "Requirement already satisfied: jedi>=0.16 in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (0.18.1)\n",
      "Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.30 in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (3.0.36)\n",
      "Requirement already satisfied: pygments>=2.4.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (2.15.1)\n",
      "Requirement already satisfied: traitlets>=5 in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (5.7.1)\n",
      "Requirement already satisfied: decorator in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (5.1.1)\n",
      "Requirement already satisfied: pexpect>4.3 in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (4.8.0)\n",
      "Requirement already satisfied: pickleshare in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (0.7.5)\n",
      "Requirement already satisfied: backcall in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (0.2.0)\n",
      "Requirement already satisfied: matplotlib-inline in /Users/qian/anaconda3/lib/python3.10/site-packages (from ipython->execnb>=0.1.4->nbdev) (0.1.6)\n",
      "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /Users/qian/anaconda3/lib/python3.10/site-packages (from jedi>=0.16->ipython->execnb>=0.1.4->nbdev) (0.8.3)\n",
      "Requirement already satisfied: ptyprocess>=0.5 in /Users/qian/anaconda3/lib/python3.10/site-packages (from pexpect>4.3->ipython->execnb>=0.1.4->nbdev) (0.7.0)\n",
      "Requirement already satisfied: wcwidth in /Users/qian/anaconda3/lib/python3.10/site-packages (from prompt-toolkit<3.1.0,>=3.0.30->ipython->execnb>=0.1.4->nbdev) (0.2.5)\n",
      "Requirement already satisfied: pure-eval in /Users/qian/anaconda3/lib/python3.10/site-packages (from stack-data->ipython->execnb>=0.1.4->nbdev) (0.2.2)\n",
      "Requirement already satisfied: executing in /Users/qian/anaconda3/lib/python3.10/site-packages (from stack-data->ipython->execnb>=0.1.4->nbdev) (0.8.3)\n",
      "Installing collected packages: astunparse, ghapi, execnb, nbdev\n",
      "Successfully installed astunparse-1.6.3 execnb-0.1.5 ghapi-1.0.4 nbdev-2.3.12\n"
     ]
    }
   ],
   "source": [
    "!pip install nbdev"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "id": "393a99a6-f3c9-4b5f-916a-42e5d2960413",
   "metadata": {},
   "outputs": [],
   "source": [
    "from nbdev.export import nb_export"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "id": "3743349a-5092-4ba7-90cf-7ee39a30c920",
   "metadata": {},
   "outputs": [],
   "source": [
    "nb_export('app.ipynb')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "f098200d-9776-4707-b267-99f7f706b260",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1m\u001b[94mnbdev_bump_version\u001b[22m\u001b[39m        Increment version in settings.ini by one\n",
      "\u001b[1m\u001b[94mnbdev_changelog\u001b[22m\u001b[39m           Create a CHANGELOG.md file from closed and labeled GitHub issues\n",
      "\u001b[1m\u001b[94mnbdev_clean\u001b[22m\u001b[39m               Clean all notebooks in `fname` to avoid merge conflicts\n",
      "\u001b[1m\u001b[94mnbdev_conda\u001b[22m\u001b[39m               Create a `meta.yaml` file ready to be built into a package, and optionally build and upload it\n",
      "\u001b[1m\u001b[94mnbdev_create_config\u001b[22m\u001b[39m       Create a config file.\n",
      "\u001b[1m\u001b[94mnbdev_docs\u001b[22m\u001b[39m                Create Quarto docs and README.md\n",
      "\u001b[1m\u001b[94mnbdev_export\u001b[22m\u001b[39m              Export notebooks in `path` to Python modules\n",
      "\u001b[1m\u001b[94mnbdev_filter\u001b[22m\u001b[39m              A notebook filter for Quarto\n",
      "\u001b[1m\u001b[94mnbdev_fix\u001b[22m\u001b[39m                 Create working notebook from conflicted notebook `nbname`\n",
      "\u001b[1m\u001b[94mnbdev_help\u001b[22m\u001b[39m                Show help for all console scripts\n",
      "\u001b[1m\u001b[94mnbdev_install\u001b[22m\u001b[39m             Install Quarto and the current library\n",
      "\u001b[1m\u001b[94mnbdev_install_hooks\u001b[22m\u001b[39m       Install Jupyter and git hooks to automatically clean, trust, and fix merge conflicts in notebooks\n",
      "\u001b[1m\u001b[94mnbdev_install_quarto\u001b[22m\u001b[39m      Install latest Quarto on macOS or Linux, prints instructions for Windows\n",
      "\u001b[1m\u001b[94mnbdev_merge\u001b[22m\u001b[39m               Git merge driver for notebooks\n",
      "\u001b[1m\u001b[94mnbdev_migrate\u001b[22m\u001b[39m             Convert all markdown and notebook files in `path` from v1 to v2\n",
      "\u001b[1m\u001b[94mnbdev_new\u001b[22m\u001b[39m                 Create an nbdev project.\n",
      "\u001b[1m\u001b[94mnbdev_prepare\u001b[22m\u001b[39m             Export, test, and clean notebooks, and render README if needed\n",
      "\u001b[1m\u001b[94mnbdev_preview\u001b[22m\u001b[39m             Preview docs locally\n",
      "\u001b[1m\u001b[94mnbdev_proc_nbs\u001b[22m\u001b[39m            Process notebooks in `path` for docs rendering\n",
      "\u001b[1m\u001b[94mnbdev_pypi\u001b[22m\u001b[39m                Create and upload Python package to PyPI\n",
      "\u001b[1m\u001b[94mnbdev_readme\u001b[22m\u001b[39m              None\n",
      "\u001b[1m\u001b[94mnbdev_release_both\u001b[22m\u001b[39m        Release both conda and PyPI packages\n",
      "\u001b[1m\u001b[94mnbdev_release_gh\u001b[22m\u001b[39m          Calls `nbdev_changelog`, lets you edit the result, then pushes to git and calls `nbdev_release_git`\n",
      "\u001b[1m\u001b[94mnbdev_release_git\u001b[22m\u001b[39m         Tag and create a release in GitHub for the current version\n",
      "\u001b[1m\u001b[94mnbdev_sidebar\u001b[22m\u001b[39m             Create sidebar.yml\n",
      "\u001b[1m\u001b[94mnbdev_test\u001b[22m\u001b[39m                Test in parallel notebooks matching `path`, passing along `flags`\n",
      "\u001b[1m\u001b[94mnbdev_trust\u001b[22m\u001b[39m               Trust notebooks matching `fname`\n",
      "\u001b[1m\u001b[94mnbdev_update\u001b[22m\u001b[39m              Propagate change in modules matching `fname` to notebooks that created them\n"
     ]
    }
   ],
   "source": [
    "!nbdev_help"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "ef09a6b9-8433-42c3-a338-7ca7d3f6e29d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"/Users/qian/anaconda3/bin/nbdev_export\", line 8, in <module>\n",
      "    sys.exit(nbdev_export())\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/site-packages/fastcore/script.py\", line 119, in _f\n",
      "    return tfunc(**merge(args, args_from_prog(func, xtra)))\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/site-packages/nbdev/doclinks.py\", line 140, in nbdev_export\n",
      "    _build_modidx()\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/site-packages/nbdev/doclinks.py\", line 98, in _build_modidx\n",
      "    res['settings'] = {k:v for k,v in get_config().d.items()\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/site-packages/nbdev/doclinks.py\", line 98, in <dictcomp>\n",
      "    res['settings'] = {k:v for k,v in get_config().d.items()\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/_collections_abc.py\", line 911, in __iter__\n",
      "    yield (key, self._mapping[key])\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/configparser.py\", line 1259, in __getitem__\n",
      "    return self._parser.get(self._name, key)\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/configparser.py\", line 800, in get\n",
      "    return self._interpolation.before_get(self, section, option, value,\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/configparser.py\", line 395, in before_get\n",
      "    self._interpolate_some(parser, option, L, value, section, defaults, 1)\n",
      "  File \"/Users/qian/anaconda3/lib/python3.10/configparser.py\", line 434, in _interpolate_some\n",
      "    raise InterpolationMissingOptionError(\n",
      "configparser.InterpolationMissingOptionError: Bad value substitution: option 'lib_name' in section 'DEFAULT' contains an interpolation key 'repo' which is not a valid option name. Raw value: '%(repo)s'\n"
     ]
    }
   ],
   "source": [
    "!nbdev_export"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "id": "b30e6a78-d3cf-4050-b01d-e0df91a53822",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "usage: nbdev_export [-h] [--path PATH] [--symlinks] [--file_glob FILE_GLOB]\n",
      "                    [--file_re FILE_RE] [--folder_re FOLDER_RE]\n",
      "                    [--skip_file_glob SKIP_FILE_GLOB]\n",
      "                    [--skip_file_re SKIP_FILE_RE]\n",
      "                    [--skip_folder_re SKIP_FOLDER_RE]\n",
      "\n",
      "Export notebooks in `path` to Python modules\n",
      "\n",
      "options:\n",
      "  -h, --help                       show this help message and exit\n",
      "  --path PATH                      Path or filename\n",
      "  --symlinks                       Follow symlinks? (default: False)\n",
      "  --file_glob FILE_GLOB            Only include files matching glob (default:\n",
      "                                   *.ipynb)\n",
      "  --file_re FILE_RE                Only include files matching regex\n",
      "  --folder_re FOLDER_RE            Only enter folders matching regex\n",
      "  --skip_file_glob SKIP_FILE_GLOB  Skip files matching glob\n",
      "  --skip_file_re SKIP_FILE_RE      Skip files matching regex (default: ^[_.])\n",
      "  --skip_folder_re SKIP_FOLDER_RE  Skip folders matching regex (default: ^[_.])\n"
     ]
    }
   ],
   "source": [
    "!nbdev_export -h"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73693586-4590-4694-942f-47eaeeadcca8",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}