from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import gradio as grad model_name = "Helsinki-NLP/opus-mt-ko-en" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) #opus_translator = pipeline("translation", model=model_name) def translate(text): inputs = tokenizer(text, return_tensors="pt") translation_output = model.generate(**input) response = tokenizer.decode(translation_output[0], skip_special_tokens=True) #response = opus_translator(text) return response # Web UI grad.Interface(translate, inputs=["text"], outputs=["text"]).launch()