Jagad1234unique commited on
Commit
54a242a
·
verified ·
1 Parent(s): f5413de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -0
app.py CHANGED
@@ -4,3 +4,30 @@ gr.load("models/Qwen/Qwen2.5-72B").launch()
4
  model = gr.load("model_path") # Load the model only once at startup
5
  def predict(input_data):
6
  return model(input_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  model = gr.load("model_path") # Load the model only once at startup
5
  def predict(input_data):
6
  return model(input_data)
7
+
8
+ # Inference pipeline
9
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
10
+
11
+ # Chat function
12
+ def chat_with_model(prompt, max_tokens=100):
13
+ responses = generator(prompt, max_length=max_tokens, do_sample=True, temperature=0.7, top_k=50)
14
+ return responses[0]["generated_text"]
15
+
16
+ # Gradio Interface
17
+ with gr.Blocks() as chat_interface:
18
+ gr.Markdown("# 🚀 Super Fast ChatGPT")
19
+ with gr.Row():
20
+ with gr.Column():
21
+ user_input = gr.Textbox(label="Enter your message", placeholder="Type something...")
22
+ max_tokens = gr.Slider(50, 300, value=100, step=10, label="Max Tokens")
23
+ send_button = gr.Button("Send")
24
+ with gr.Column():
25
+ chat_output = gr.Textbox(label="ChatGPT's Response", placeholder="Response will appear here...", interactive=False)
26
+
27
+ send_button.click(fn=chat_with_model, inputs=[user_input, max_tokens], outputs=chat_output)
28
+ from transformers import BitsAndBytesConfig
29
+ quant_config = BitsAndBytesConfig(load_in_4bit=True)
30
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, quantization_config=quant_config)
31
+
32
+ # Launch the app
33
+ chat_interface.launch(share=False, server_name="0.0.0.0", server_port=7860)