Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import insightface
|
2 |
+
import os
|
3 |
+
import onnxruntime
|
4 |
+
import cv2
|
5 |
+
import gfpgan
|
6 |
+
import tempfile
|
7 |
+
import time
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
|
11 |
+
class Predictor:
|
12 |
+
def __init__(self):
|
13 |
+
self.setup()
|
14 |
+
|
15 |
+
def setup(self):
|
16 |
+
os.makedirs('models', exist_ok=True)
|
17 |
+
os.chdir('models')
|
18 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
19 |
+
os.system(
|
20 |
+
'wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
|
21 |
+
)
|
22 |
+
if not os.path.exists('inswapper_128.onnx'):
|
23 |
+
os.system(
|
24 |
+
'wget https://huggingface.co/ashleykleynhans/inswapper/resolve/main/inswapper_128.onnx'
|
25 |
+
)
|
26 |
+
os.chdir('..')
|
27 |
+
|
28 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
29 |
+
self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx',
|
30 |
+
providers=onnxruntime.get_available_providers())
|
31 |
+
self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
|
32 |
+
self.face_analyser = insightface.app.FaceAnalysis(name='buffalo_l')
|
33 |
+
self.face_analyser.prepare(ctx_id=0, det_size=(640, 640))
|
34 |
+
|
35 |
+
def get_face(self, img_data):
|
36 |
+
analysed = self.face_analyser.get(img_data)
|
37 |
+
try:
|
38 |
+
largest = max(analysed, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
|
39 |
+
return largest
|
40 |
+
except:
|
41 |
+
print("No face found")
|
42 |
+
return None
|
43 |
+
|
44 |
+
def predict(self, input_image, swap_image):
|
45 |
+
"""Run a single prediction on the model"""
|
46 |
+
try:
|
47 |
+
frame = cv2.imread(input_image.name)
|
48 |
+
face = self.get_face(frame)
|
49 |
+
source_face = self.get_face(cv2.imread(swap_image.name))
|
50 |
+
try:
|
51 |
+
print(frame.shape, face.shape, source_face.shape)
|
52 |
+
except:
|
53 |
+
print("printing shapes failed.")
|
54 |
+
result = self.face_swapper.get(frame, face, source_face, paste_back=True)
|
55 |
+
|
56 |
+
_, _, result = self.face_enhancer.enhance(
|
57 |
+
result,
|
58 |
+
paste_back=True
|
59 |
+
)
|
60 |
+
out_path = tempfile.mkdtemp() + f"/{str(int(time.time()))}.jpg"
|
61 |
+
cv2.imwrite(out_path, result)
|
62 |
+
return out_path
|
63 |
+
except Exception as e:
|
64 |
+
print(f"{e}")
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
# Instantiate the Predictor class
|
69 |
+
predictor = Predictor()
|
70 |
+
title = "Swap Faces Using Our Model!!!"
|
71 |
+
|
72 |
+
# Create Gradio Interface
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=predictor.predict,
|
75 |
+
inputs=[
|
76 |
+
gr.inputs.Image(type="file", label="Target Image"),
|
77 |
+
gr.inputs.Image(type="file", label="Swap Image")
|
78 |
+
],
|
79 |
+
outputs=gr.outputs.Image(type="file", label="Result"),
|
80 |
+
title=title,
|
81 |
+
examples=[["input.jpg", "swap img.jpg"]])
|
82 |
+
|
83 |
+
|
84 |
+
# Launch the Gradio Interface
|
85 |
+
iface.launch()
|