import gradio as gr from huggingface_hub import InferenceClient from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import Trainer, TrainingArguments model_name = "HuggingFaceH4/zephyr-7b-beta" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) dataset = load_dataset("json", data_files="data.json", split = "train") # Tokenize the dataset def preprocess_function(examples): inputs = [example['input'] for example in examples] targets = [examples['output'] for example in examples] model_inputs = tokenizer(inputs, padding=True, truncation=True) labels = tokenizer(targets, padding=True, truncation=True).input_ids model_inputs['labels'] = labels return model_inputs tokenized_datasets = dataset.map(preprocess_function, batched = True) training_args = TrainingArguments( output_dir = "./results", evaluation_strategy = "epoch", learning_rate = 2e-5, per_device_train_batch_size = 3, weight_decay = 0.01, ) trainer = Trainer( model = model, args = training_args, train_dataset = tokenized_datasets["train"], eval_dataset = tokenized_datasets["validation"], ) # Start fine-tuning trainer.train() trainer.evaluate() model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") client = InferenceClient("./fine_tuned_model") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), ], ) if __name__ == "__main__": demo.launch()