JaganathC commited on
Commit
9221ad8
·
1 Parent(s): 78bc748

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -25
app.py CHANGED
@@ -6,12 +6,9 @@ import matplotlib.pyplot as plt
6
  from sklearn.ensemble import RandomForestClassifier, VotingClassifier
7
  from sklearn.tree import DecisionTreeClassifier
8
  from sklearn.linear_model import LogisticRegression
9
- from sklearn.svm import SVC
10
  from sklearn.naive_bayes import GaussianNB
11
- from sklearn.neural_network import MLPClassifier
12
- from sklearn.ensemble import GradientBoostingClassifier
13
  from xgboost import XGBClassifier
14
- from lightgbm import LGBMClassifier
15
  from sklearn.model_selection import train_test_split
16
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
17
 
@@ -188,23 +185,9 @@ if 'Logistic Regression' in selected_models:
188
  if 'Decision Tree' in selected_models:
189
  models_to_run.append(DecisionTreeClassifier())
190
 
191
-
192
-
193
- if 'Support Vector Machine' in selected_models:
194
- models_to_run.append(SVC())
195
-
196
- if 'LightGBM' in selected_models:
197
- models_to_run.append(LGBMClassifier())
198
-
199
  if 'XGBoost' in selected_models:
200
  models_to_run.append(XGBClassifier())
201
 
202
- if 'Multilayer Perceptron' in selected_models:
203
- models_to_run.append(MLPClassifier())
204
-
205
- if 'Artificial Neural Network' in selected_models:
206
- models_to_run.append(MLPClassifier(hidden_layer_sizes=(100,), max_iter=100))
207
-
208
 
209
  user_input = np.array([age, bp, sg, al, sugar, rbc, pc, pcc, bac, bgr, bu, sc,
210
  sod, pot, hemo, pcv, wbc, rbcc, htn, dm, cad, appet, pe, ane]).reshape(1, -1)
@@ -217,15 +200,15 @@ def get_dataset():
217
  # corr_matrix = data.corr()
218
 
219
  # Create a heatmap of the correlation matrix
220
- # plt.figure(figsize=(10, 8))
221
- # sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
222
- # plt.title('Correlation Matrix')
223
- # plt.xticks(rotation=45)
224
- # plt.yticks(rotation=0)
225
- # plt.tight_layout()
226
 
227
  # Display the heatmap in Streamlit
228
- # st.pyplot()
229
 
230
  return data
231
 
 
6
  from sklearn.ensemble import RandomForestClassifier, VotingClassifier
7
  from sklearn.tree import DecisionTreeClassifier
8
  from sklearn.linear_model import LogisticRegression
 
9
  from sklearn.naive_bayes import GaussianNB
 
 
10
  from xgboost import XGBClassifier
11
+
12
  from sklearn.model_selection import train_test_split
13
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
14
 
 
185
  if 'Decision Tree' in selected_models:
186
  models_to_run.append(DecisionTreeClassifier())
187
 
 
 
 
 
 
 
 
 
188
  if 'XGBoost' in selected_models:
189
  models_to_run.append(XGBClassifier())
190
 
 
 
 
 
 
 
191
 
192
  user_input = np.array([age, bp, sg, al, sugar, rbc, pc, pcc, bac, bgr, bu, sc,
193
  sod, pot, hemo, pcv, wbc, rbcc, htn, dm, cad, appet, pe, ane]).reshape(1, -1)
 
200
  # corr_matrix = data.corr()
201
 
202
  # Create a heatmap of the correlation matrix
203
+ plt.figure(figsize=(10, 8))
204
+ sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
205
+ plt.title('Correlation Matrix')
206
+ plt.xticks(rotation=45)
207
+ plt.yticks(rotation=0)
208
+ plt.tight_layout()
209
 
210
  # Display the heatmap in Streamlit
211
+ st.pyplot()
212
 
213
  return data
214