JaganathC commited on
Commit
94ff837
·
1 Parent(s): 27fa752

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -1
app.py CHANGED
@@ -6,9 +6,12 @@ import matplotlib.pyplot as plt
6
  from sklearn.ensemble import RandomForestClassifier, VotingClassifier
7
  from sklearn.tree import DecisionTreeClassifier
8
  from sklearn.linear_model import LogisticRegression
 
9
  from sklearn.naive_bayes import GaussianNB
 
 
10
  from xgboost import XGBClassifier
11
-
12
  from sklearn.model_selection import train_test_split
13
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
14
 
@@ -185,9 +188,23 @@ if 'Logistic Regression' in selected_models:
185
  if 'Decision Tree' in selected_models:
186
  models_to_run.append(DecisionTreeClassifier())
187
 
 
 
 
 
 
 
 
 
188
  if 'XGBoost' in selected_models:
189
  models_to_run.append(XGBClassifier())
190
 
 
 
 
 
 
 
191
 
192
  user_input = np.array([age, bp, sg, al, sugar, rbc, pc, pcc, bac, bgr, bu, sc,
193
  sod, pot, hemo, pcv, wbc, rbcc, htn, dm, cad, appet, pe, ane]).reshape(1, -1)
@@ -195,6 +212,21 @@ user_input = np.array([age, bp, sg, al, sugar, rbc, pc, pcc, bac, bgr, bu, sc,
195
  # import dataset
196
  def get_dataset():
197
  data = pd.read_csv('kidney.csv')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
  return data
199
 
200
  def generate_model_labels(model_names):
 
6
  from sklearn.ensemble import RandomForestClassifier, VotingClassifier
7
  from sklearn.tree import DecisionTreeClassifier
8
  from sklearn.linear_model import LogisticRegression
9
+ from sklearn.svm import SVC
10
  from sklearn.naive_bayes import GaussianNB
11
+ from sklearn.neural_network import MLPClassifier
12
+ from sklearn.ensemble import GradientBoostingClassifier
13
  from xgboost import XGBClassifier
14
+ from lightgbm import LGBMClassifier
15
  from sklearn.model_selection import train_test_split
16
  from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
17
 
 
188
  if 'Decision Tree' in selected_models:
189
  models_to_run.append(DecisionTreeClassifier())
190
 
191
+
192
+
193
+ if 'Support Vector Machine' in selected_models:
194
+ models_to_run.append(SVC())
195
+
196
+ if 'LightGBM' in selected_models:
197
+ models_to_run.append(LGBMClassifier())
198
+
199
  if 'XGBoost' in selected_models:
200
  models_to_run.append(XGBClassifier())
201
 
202
+ if 'Multilayer Perceptron' in selected_models:
203
+ models_to_run.append(MLPClassifier())
204
+
205
+ if 'Artificial Neural Network' in selected_models:
206
+ models_to_run.append(MLPClassifier(hidden_layer_sizes=(100,), max_iter=100))
207
+
208
 
209
  user_input = np.array([age, bp, sg, al, sugar, rbc, pc, pcc, bac, bgr, bu, sc,
210
  sod, pot, hemo, pcv, wbc, rbcc, htn, dm, cad, appet, pe, ane]).reshape(1, -1)
 
212
  # import dataset
213
  def get_dataset():
214
  data = pd.read_csv('kidney.csv')
215
+
216
+ # Calculate the correlation matrix
217
+ # corr_matrix = data.corr()
218
+
219
+ # Create a heatmap of the correlation matrix
220
+ # plt.figure(figsize=(10, 8))
221
+ # sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
222
+ # plt.title('Correlation Matrix')
223
+ # plt.xticks(rotation=45)
224
+ # plt.yticks(rotation=0)
225
+ # plt.tight_layout()
226
+
227
+ # Display the heatmap in Streamlit
228
+ # st.pyplot()
229
+
230
  return data
231
 
232
  def generate_model_labels(model_names):