Update indexing.py
Browse files- indexing.py +18 -27
indexing.py
CHANGED
@@ -4,54 +4,50 @@ Indexing with vector database
|
|
4 |
|
5 |
from pathlib import Path
|
6 |
import re
|
7 |
-
|
8 |
import chromadb
|
9 |
-
|
10 |
from unidecode import unidecode
|
11 |
|
12 |
-
from langchain_community.document_loaders import PyPDFLoader
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
from langchain_chroma import Chroma
|
15 |
from langchain_huggingface import HuggingFaceEmbeddings
|
16 |
|
17 |
|
18 |
-
|
19 |
-
# Load PDF document and create doc splits
|
20 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
21 |
-
"""Load
|
22 |
|
23 |
-
loaders = [PyPDFLoader(x) for x in list_file_path]
|
24 |
pages = []
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
text_splitter = RecursiveCharacterTextSplitter(
|
28 |
-
chunk_size=chunk_size,
|
|
|
29 |
)
|
30 |
doc_splits = text_splitter.split_documents(pages)
|
31 |
-
return doc_splits
|
32 |
|
33 |
|
34 |
# Generate collection name for vector database
|
35 |
-
# - Use filepath as input, ensuring unicode text
|
36 |
-
# - Handle multiple languages (arabic, chinese)
|
37 |
def create_collection_name(filepath):
|
38 |
"""Create collection name for vector database"""
|
39 |
-
|
40 |
-
# Extract filename without extension
|
41 |
collection_name = Path(filepath).stem
|
42 |
-
# Fix potential issues from naming convention
|
43 |
-
## Remove space
|
44 |
collection_name = collection_name.replace(" ", "-")
|
45 |
-
## ASCII transliterations of Unicode text
|
46 |
collection_name = unidecode(collection_name)
|
47 |
-
## Remove special characters
|
48 |
collection_name = re.sub("[^A-Za-z0-9]+", "-", collection_name)
|
49 |
-
## Limit length to 50 characters
|
50 |
collection_name = collection_name[:50]
|
51 |
-
## Minimum length of 3 characters
|
52 |
if len(collection_name) < 3:
|
53 |
collection_name = collection_name + "xyz"
|
54 |
-
## Enforce start and end as alphanumeric character
|
55 |
if not collection_name[0].isalnum():
|
56 |
collection_name = "A" + collection_name[1:]
|
57 |
if not collection_name[-1].isalnum():
|
@@ -64,12 +60,8 @@ def create_collection_name(filepath):
|
|
64 |
# Create vector database
|
65 |
def create_db(splits, collection_name):
|
66 |
"""Create embeddings and vector database"""
|
67 |
-
|
68 |
embedding = HuggingFaceEmbeddings(
|
69 |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
70 |
-
# model_name="sentence-transformers/all-MiniLM-L6-v2",
|
71 |
-
# model_kwargs={"device": "cpu"},
|
72 |
-
# encode_kwargs={'normalize_embeddings': False}
|
73 |
)
|
74 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
75 |
new_client = chromadb.EphemeralClient()
|
@@ -78,6 +70,5 @@ def create_db(splits, collection_name):
|
|
78 |
embedding=embedding,
|
79 |
client=new_client,
|
80 |
collection_name=collection_name,
|
81 |
-
# persist_directory=default_persist_directory
|
82 |
)
|
83 |
return vectordb
|
|
|
4 |
|
5 |
from pathlib import Path
|
6 |
import re
|
|
|
7 |
import chromadb
|
|
|
8 |
from unidecode import unidecode
|
9 |
|
10 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
from langchain_chroma import Chroma
|
13 |
from langchain_huggingface import HuggingFaceEmbeddings
|
14 |
|
15 |
|
16 |
+
# Load PDF or TXT document and create doc splits
|
|
|
17 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
18 |
+
"""Load documents and create doc splits"""
|
19 |
|
|
|
20 |
pages = []
|
21 |
+
full_text = ""
|
22 |
+
for path in list_file_path:
|
23 |
+
if path.endswith(".pdf"):
|
24 |
+
loader = PyPDFLoader(path)
|
25 |
+
elif path.endswith(".txt"):
|
26 |
+
loader = TextLoader(path)
|
27 |
+
else:
|
28 |
+
continue
|
29 |
+
doc_pages = loader.load()
|
30 |
+
pages.extend(doc_pages)
|
31 |
+
full_text += "\n".join([p.page_content for p in doc_pages]) + "\n"
|
32 |
+
|
33 |
text_splitter = RecursiveCharacterTextSplitter(
|
34 |
+
chunk_size=chunk_size,
|
35 |
+
chunk_overlap=chunk_overlap,
|
36 |
)
|
37 |
doc_splits = text_splitter.split_documents(pages)
|
38 |
+
return doc_splits, full_text
|
39 |
|
40 |
|
41 |
# Generate collection name for vector database
|
|
|
|
|
42 |
def create_collection_name(filepath):
|
43 |
"""Create collection name for vector database"""
|
|
|
|
|
44 |
collection_name = Path(filepath).stem
|
|
|
|
|
45 |
collection_name = collection_name.replace(" ", "-")
|
|
|
46 |
collection_name = unidecode(collection_name)
|
|
|
47 |
collection_name = re.sub("[^A-Za-z0-9]+", "-", collection_name)
|
|
|
48 |
collection_name = collection_name[:50]
|
|
|
49 |
if len(collection_name) < 3:
|
50 |
collection_name = collection_name + "xyz"
|
|
|
51 |
if not collection_name[0].isalnum():
|
52 |
collection_name = "A" + collection_name[1:]
|
53 |
if not collection_name[-1].isalnum():
|
|
|
60 |
# Create vector database
|
61 |
def create_db(splits, collection_name):
|
62 |
"""Create embeddings and vector database"""
|
|
|
63 |
embedding = HuggingFaceEmbeddings(
|
64 |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
|
|
|
|
|
|
65 |
)
|
66 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
67 |
new_client = chromadb.EphemeralClient()
|
|
|
70 |
embedding=embedding,
|
71 |
client=new_client,
|
72 |
collection_name=collection_name,
|
|
|
73 |
)
|
74 |
return vectordb
|