Upload 4 files
Browse files- app (3).py +343 -0
- requirements (1).txt +14 -0
- requirements-dev.txt +2 -0
- retrieval.py +122 -0
app (3).py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
PDF-based chatbot with Retrieval-Augmented Generation
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
import indexing
|
11 |
+
import retrieval
|
12 |
+
|
13 |
+
|
14 |
+
# default_persist_directory = './chroma_HF/'
|
15 |
+
list_llm = [
|
16 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
17 |
+
"microsoft/Phi-3.5-mini-instruct",
|
18 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
19 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
20 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
21 |
+
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
22 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
23 |
+
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
24 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
25 |
+
"google/gemma-2-2b-it",
|
26 |
+
"google/gemma-2-9b-it",
|
27 |
+
"Qwen/Qwen2.5-1.5B-Instruct",
|
28 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
29 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
30 |
+
]
|
31 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
32 |
+
|
33 |
+
|
34 |
+
# Load environment file - HuggingFace API key
|
35 |
+
def retrieve_api():
|
36 |
+
"""Retrieve HuggingFace API Key"""
|
37 |
+
_ = load_dotenv()
|
38 |
+
global huggingfacehub_api_token
|
39 |
+
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
|
40 |
+
|
41 |
+
|
42 |
+
# Initialize database
|
43 |
+
def initialize_database(
|
44 |
+
list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()
|
45 |
+
):
|
46 |
+
"""Initialize database"""
|
47 |
+
|
48 |
+
# Create list of documents (when valid)
|
49 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
50 |
+
|
51 |
+
# Create collection_name for vector database
|
52 |
+
progress(0.1, desc="Creating collection name...")
|
53 |
+
collection_name = indexing.create_collection_name(list_file_path[0])
|
54 |
+
|
55 |
+
progress(0.25, desc="Loading document...")
|
56 |
+
# Load document and create splits
|
57 |
+
doc_splits = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
|
58 |
+
|
59 |
+
# Create or load vector database
|
60 |
+
progress(0.5, desc="Generating vector database...")
|
61 |
+
|
62 |
+
# global vector_db
|
63 |
+
vector_db = indexing.create_db(doc_splits, collection_name)
|
64 |
+
|
65 |
+
return vector_db, collection_name, "Complete!"
|
66 |
+
|
67 |
+
|
68 |
+
# Initialize LLM
|
69 |
+
def initialize_llm(
|
70 |
+
llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
|
71 |
+
):
|
72 |
+
"""Initialize LLM"""
|
73 |
+
|
74 |
+
# print("llm_option",llm_option)
|
75 |
+
llm_name = list_llm[llm_option]
|
76 |
+
print("llm_name: ", llm_name)
|
77 |
+
qa_chain = retrieval.initialize_llmchain(
|
78 |
+
llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
|
79 |
+
)
|
80 |
+
return qa_chain, "Complete!"
|
81 |
+
|
82 |
+
|
83 |
+
# Chatbot conversation
|
84 |
+
def conversation(qa_chain, message, history):
|
85 |
+
"""Chatbot conversation"""
|
86 |
+
|
87 |
+
qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(
|
88 |
+
qa_chain, message, history
|
89 |
+
)
|
90 |
+
|
91 |
+
# Format output gradio components
|
92 |
+
response_source1 = response_sources[0].page_content.strip()
|
93 |
+
response_source2 = response_sources[1].page_content.strip()
|
94 |
+
response_source3 = response_sources[2].page_content.strip()
|
95 |
+
# Langchain sources are zero-based
|
96 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
97 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
98 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
99 |
+
|
100 |
+
return (
|
101 |
+
qa_chain,
|
102 |
+
gr.update(value=""),
|
103 |
+
new_history,
|
104 |
+
response_source1,
|
105 |
+
response_source1_page,
|
106 |
+
response_source2,
|
107 |
+
response_source2_page,
|
108 |
+
response_source3,
|
109 |
+
response_source3_page,
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
SPACE_TITLE = """
|
114 |
+
<center><h2>PDF-based chatbot</center></h2>
|
115 |
+
<h3>Ask any questions about your PDF documents</h3>
|
116 |
+
"""
|
117 |
+
|
118 |
+
SPACE_INFO = """
|
119 |
+
<b>Description:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
120 |
+
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
121 |
+
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
122 |
+
<br><b>Notes:</b> Updated space with more recent LLM models (Qwen 2.5, Llama 3.2, SmolLM2 series)
|
123 |
+
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
124 |
+
"""
|
125 |
+
|
126 |
+
|
127 |
+
# Gradio User Interface
|
128 |
+
def gradio_ui():
|
129 |
+
"""Gradio User Interface"""
|
130 |
+
|
131 |
+
with gr.Blocks(theme="base") as demo:
|
132 |
+
vector_db = gr.State()
|
133 |
+
qa_chain = gr.State()
|
134 |
+
collection_name = gr.State()
|
135 |
+
|
136 |
+
gr.Markdown(SPACE_TITLE)
|
137 |
+
gr.Markdown(SPACE_INFO)
|
138 |
+
|
139 |
+
with gr.Tab("Step 1 - Upload PDF"):
|
140 |
+
with gr.Row():
|
141 |
+
document = gr.File(
|
142 |
+
height=200,
|
143 |
+
file_count="multiple",
|
144 |
+
file_types=[".pdf"],
|
145 |
+
interactive=True,
|
146 |
+
label="Upload your PDF documents (single or multiple)",
|
147 |
+
)
|
148 |
+
|
149 |
+
with gr.Tab("Step 2 - Process document"):
|
150 |
+
with gr.Row():
|
151 |
+
db_btn = gr.Radio(
|
152 |
+
["ChromaDB"],
|
153 |
+
label="Vector database type",
|
154 |
+
value="ChromaDB",
|
155 |
+
type="index",
|
156 |
+
info="Choose your vector database",
|
157 |
+
)
|
158 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
159 |
+
with gr.Row():
|
160 |
+
slider_chunk_size = gr.Slider(
|
161 |
+
minimum=100,
|
162 |
+
maximum=1000,
|
163 |
+
value=600,
|
164 |
+
step=20,
|
165 |
+
label="Chunk size",
|
166 |
+
info="Chunk size",
|
167 |
+
interactive=True,
|
168 |
+
)
|
169 |
+
with gr.Row():
|
170 |
+
slider_chunk_overlap = gr.Slider(
|
171 |
+
minimum=10,
|
172 |
+
maximum=200,
|
173 |
+
value=40,
|
174 |
+
step=10,
|
175 |
+
label="Chunk overlap",
|
176 |
+
info="Chunk overlap",
|
177 |
+
interactive=True,
|
178 |
+
)
|
179 |
+
with gr.Row():
|
180 |
+
db_progress = gr.Textbox(
|
181 |
+
label="Vector database initialization", value="None"
|
182 |
+
)
|
183 |
+
with gr.Row():
|
184 |
+
db_btn = gr.Button("Generate vector database")
|
185 |
+
|
186 |
+
with gr.Tab("Step 3 - Initialize QA chain"):
|
187 |
+
with gr.Row():
|
188 |
+
llm_btn = gr.Radio(
|
189 |
+
list_llm_simple,
|
190 |
+
label="LLM models",
|
191 |
+
value=list_llm_simple[6],
|
192 |
+
type="index",
|
193 |
+
info="Choose your LLM model",
|
194 |
+
)
|
195 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
196 |
+
with gr.Row():
|
197 |
+
slider_temperature = gr.Slider(
|
198 |
+
minimum=0.01,
|
199 |
+
maximum=1.0,
|
200 |
+
value=0.7,
|
201 |
+
step=0.1,
|
202 |
+
label="Temperature",
|
203 |
+
info="Model temperature",
|
204 |
+
interactive=True,
|
205 |
+
)
|
206 |
+
with gr.Row():
|
207 |
+
slider_maxtokens = gr.Slider(
|
208 |
+
minimum=224,
|
209 |
+
maximum=4096,
|
210 |
+
value=1024,
|
211 |
+
step=32,
|
212 |
+
label="Max Tokens",
|
213 |
+
info="Model max tokens",
|
214 |
+
interactive=True,
|
215 |
+
)
|
216 |
+
with gr.Row():
|
217 |
+
slider_topk = gr.Slider(
|
218 |
+
minimum=1,
|
219 |
+
maximum=10,
|
220 |
+
value=3,
|
221 |
+
step=1,
|
222 |
+
label="top-k samples",
|
223 |
+
info="Model top-k samples",
|
224 |
+
interactive=True,
|
225 |
+
)
|
226 |
+
with gr.Row():
|
227 |
+
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
228 |
+
with gr.Row():
|
229 |
+
qachain_btn = gr.Button("Initialize Question Answering chain")
|
230 |
+
|
231 |
+
with gr.Tab("Step 4 - Chatbot"):
|
232 |
+
chatbot = gr.Chatbot(height=300, type="tuples")
|
233 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
234 |
+
with gr.Row():
|
235 |
+
doc_source1 = gr.Textbox(
|
236 |
+
label="Reference 1", lines=2, container=True, scale=20
|
237 |
+
)
|
238 |
+
source1_page = gr.Number(label="Page", scale=1)
|
239 |
+
with gr.Row():
|
240 |
+
doc_source2 = gr.Textbox(
|
241 |
+
label="Reference 2", lines=2, container=True, scale=20
|
242 |
+
)
|
243 |
+
source2_page = gr.Number(label="Page", scale=1)
|
244 |
+
with gr.Row():
|
245 |
+
doc_source3 = gr.Textbox(
|
246 |
+
label="Reference 3", lines=2, container=True, scale=20
|
247 |
+
)
|
248 |
+
source3_page = gr.Number(label="Page", scale=1)
|
249 |
+
with gr.Row():
|
250 |
+
msg = gr.Textbox(
|
251 |
+
placeholder="Type message (e.g. 'Can you summarize this document in one paragraph?')",
|
252 |
+
container=True,
|
253 |
+
)
|
254 |
+
with gr.Row():
|
255 |
+
submit_btn = gr.Button("Submit message")
|
256 |
+
clear_btn = gr.ClearButton(
|
257 |
+
components=[msg, chatbot], value="Clear conversation"
|
258 |
+
)
|
259 |
+
|
260 |
+
# Preprocessing events
|
261 |
+
db_btn.click(
|
262 |
+
initialize_database,
|
263 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
264 |
+
outputs=[vector_db, collection_name, db_progress],
|
265 |
+
)
|
266 |
+
qachain_btn.click(
|
267 |
+
initialize_llm,
|
268 |
+
inputs=[
|
269 |
+
llm_btn,
|
270 |
+
slider_temperature,
|
271 |
+
slider_maxtokens,
|
272 |
+
slider_topk,
|
273 |
+
vector_db,
|
274 |
+
],
|
275 |
+
outputs=[qa_chain, llm_progress],
|
276 |
+
).then(
|
277 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
278 |
+
inputs=None,
|
279 |
+
outputs=[
|
280 |
+
chatbot,
|
281 |
+
doc_source1,
|
282 |
+
source1_page,
|
283 |
+
doc_source2,
|
284 |
+
source2_page,
|
285 |
+
doc_source3,
|
286 |
+
source3_page,
|
287 |
+
],
|
288 |
+
queue=False,
|
289 |
+
)
|
290 |
+
|
291 |
+
# Chatbot events
|
292 |
+
msg.submit(
|
293 |
+
conversation,
|
294 |
+
inputs=[qa_chain, msg, chatbot],
|
295 |
+
outputs=[
|
296 |
+
qa_chain,
|
297 |
+
msg,
|
298 |
+
chatbot,
|
299 |
+
doc_source1,
|
300 |
+
source1_page,
|
301 |
+
doc_source2,
|
302 |
+
source2_page,
|
303 |
+
doc_source3,
|
304 |
+
source3_page,
|
305 |
+
],
|
306 |
+
queue=False,
|
307 |
+
)
|
308 |
+
submit_btn.click(
|
309 |
+
conversation,
|
310 |
+
inputs=[qa_chain, msg, chatbot],
|
311 |
+
outputs=[
|
312 |
+
qa_chain,
|
313 |
+
msg,
|
314 |
+
chatbot,
|
315 |
+
doc_source1,
|
316 |
+
source1_page,
|
317 |
+
doc_source2,
|
318 |
+
source2_page,
|
319 |
+
doc_source3,
|
320 |
+
source3_page,
|
321 |
+
],
|
322 |
+
queue=False,
|
323 |
+
)
|
324 |
+
clear_btn.click(
|
325 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
326 |
+
inputs=None,
|
327 |
+
outputs=[
|
328 |
+
chatbot,
|
329 |
+
doc_source1,
|
330 |
+
source1_page,
|
331 |
+
doc_source2,
|
332 |
+
source2_page,
|
333 |
+
doc_source3,
|
334 |
+
source3_page,
|
335 |
+
],
|
336 |
+
queue=False,
|
337 |
+
)
|
338 |
+
demo.queue().launch(debug=True)
|
339 |
+
|
340 |
+
|
341 |
+
if __name__ == "__main__":
|
342 |
+
retrieve_api()
|
343 |
+
gradio_ui()
|
requirements (1).txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers[torch]
|
2 |
+
sentence-transformers
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
langchain-huggingface
|
6 |
+
langchain-chroma
|
7 |
+
huggingface-hub
|
8 |
+
tqdm
|
9 |
+
accelerate
|
10 |
+
pypdf
|
11 |
+
chromadb
|
12 |
+
unidecode
|
13 |
+
gradio
|
14 |
+
python-dotenv
|
requirements-dev.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pylint
|
2 |
+
black
|
retrieval.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LLM chain retrieval
|
3 |
+
"""
|
4 |
+
|
5 |
+
import json
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
11 |
+
from langchain_core.prompts import PromptTemplate
|
12 |
+
|
13 |
+
|
14 |
+
# Add system template for RAG application
|
15 |
+
PROMPT_TEMPLATE = """
|
16 |
+
You are an assistant for question-answering tasks. Use the following pieces of context to answer the question at the end.
|
17 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer concise.
|
18 |
+
Question: {question}
|
19 |
+
Context: {context}
|
20 |
+
Helpful Answer:
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
# Initialize langchain LLM chain
|
25 |
+
def initialize_llmchain(
|
26 |
+
llm_model,
|
27 |
+
huggingfacehub_api_token,
|
28 |
+
temperature,
|
29 |
+
max_tokens,
|
30 |
+
top_k,
|
31 |
+
vector_db,
|
32 |
+
progress=gr.Progress(),
|
33 |
+
):
|
34 |
+
"""Initialize Langchain LLM chain"""
|
35 |
+
|
36 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
37 |
+
# HuggingFaceHub uses HF inference endpoints
|
38 |
+
progress(0.5, desc="Initializing HF Hub...")
|
39 |
+
# Use of trust_remote_code as model_kwargs
|
40 |
+
# Warning: langchain issue
|
41 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
42 |
+
|
43 |
+
# if 'Llama' in llm_model:
|
44 |
+
# task = "conversational"
|
45 |
+
# else:
|
46 |
+
# task = "text-generation"
|
47 |
+
# print(f"Task: {task}")
|
48 |
+
|
49 |
+
llm = HuggingFaceEndpoint(
|
50 |
+
repo_id=llm_model,
|
51 |
+
task="text-generation",
|
52 |
+
#task="conversational",
|
53 |
+
provider="hf-inference",
|
54 |
+
temperature=temperature,
|
55 |
+
max_new_tokens=max_tokens,
|
56 |
+
top_k=top_k,
|
57 |
+
huggingfacehub_api_token=huggingfacehub_api_token,
|
58 |
+
)
|
59 |
+
|
60 |
+
progress(0.75, desc="Defining buffer memory...")
|
61 |
+
memory = ConversationBufferMemory(
|
62 |
+
memory_key="chat_history", output_key="answer", return_messages=True
|
63 |
+
)
|
64 |
+
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
65 |
+
retriever = vector_db.as_retriever()
|
66 |
+
|
67 |
+
progress(0.8, desc="Defining retrieval chain...")
|
68 |
+
with open('prompt_template.json', 'r') as file:
|
69 |
+
system_prompt = json.load(file)
|
70 |
+
prompt_template = system_prompt["prompt"]
|
71 |
+
rag_prompt = PromptTemplate(
|
72 |
+
template=prompt_template, input_variables=["context", "question"]
|
73 |
+
)
|
74 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
75 |
+
llm,
|
76 |
+
retriever=retriever,
|
77 |
+
chain_type="stuff",
|
78 |
+
memory=memory,
|
79 |
+
combine_docs_chain_kwargs={"prompt": rag_prompt},
|
80 |
+
return_source_documents=True,
|
81 |
+
# return_generated_question=False,
|
82 |
+
verbose=False,
|
83 |
+
)
|
84 |
+
progress(0.9, desc="Done!")
|
85 |
+
|
86 |
+
return qa_chain
|
87 |
+
|
88 |
+
|
89 |
+
def format_chat_history(message, chat_history):
|
90 |
+
"""Format chat history for llm chain"""
|
91 |
+
|
92 |
+
formatted_chat_history = []
|
93 |
+
for user_message, bot_message in chat_history:
|
94 |
+
formatted_chat_history.append(f"User: {user_message}")
|
95 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
96 |
+
return formatted_chat_history
|
97 |
+
|
98 |
+
|
99 |
+
def invoke_qa_chain(qa_chain, message, history):
|
100 |
+
"""Invoke question-answering chain"""
|
101 |
+
|
102 |
+
formatted_chat_history = format_chat_history(message, history)
|
103 |
+
# print("formatted_chat_history",formatted_chat_history)
|
104 |
+
|
105 |
+
# Generate response using QA chain
|
106 |
+
response = qa_chain.invoke(
|
107 |
+
{"question": message, "chat_history": formatted_chat_history}
|
108 |
+
)
|
109 |
+
|
110 |
+
response_sources = response["source_documents"]
|
111 |
+
|
112 |
+
response_answer = response["answer"]
|
113 |
+
if response_answer.find("Helpful Answer:") != -1:
|
114 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
115 |
+
|
116 |
+
# Append user message and response to chat history
|
117 |
+
new_history = history + [(message, response_answer)]
|
118 |
+
|
119 |
+
# print ('chat response: ', response_answer)
|
120 |
+
# print('DB source', response_sources)
|
121 |
+
|
122 |
+
return qa_chain, new_history, response_sources
|