Update app.py
Browse files
app.py
CHANGED
@@ -1,342 +1,123 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
import os
|
6 |
import gradio as gr
|
7 |
-
|
8 |
from dotenv import load_dotenv
|
9 |
-
|
10 |
import indexing
|
11 |
import retrieval
|
|
|
12 |
|
13 |
-
|
14 |
-
# default_persist_directory = './chroma_HF/'
|
15 |
list_llm = [
|
16 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
17 |
"microsoft/Phi-3.5-mini-instruct",
|
18 |
"meta-llama/Llama-3.1-8B-Instruct",
|
19 |
"meta-llama/Llama-3.2-3B-Instruct",
|
20 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
21 |
-
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
22 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
23 |
-
"HuggingFaceH4/zephyr-7b-gemma-v0.1",
|
24 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
25 |
"google/gemma-2-2b-it",
|
26 |
-
"google/gemma-2-9b-it",
|
27 |
-
"Qwen/Qwen2.5-1.5B-Instruct",
|
28 |
"Qwen/Qwen2.5-3B-Instruct",
|
29 |
-
"Qwen/Qwen2.5-7B-Instruct",
|
30 |
]
|
31 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
32 |
|
33 |
|
34 |
-
# Load environment file - HuggingFace API key
|
35 |
def retrieve_api():
|
36 |
-
|
37 |
-
_ = load_dotenv()
|
38 |
global huggingfacehub_api_token
|
39 |
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
|
40 |
|
41 |
|
42 |
-
|
43 |
-
def initialize_database(
|
44 |
-
list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()
|
45 |
-
):
|
46 |
-
"""Initialize database"""
|
47 |
-
|
48 |
-
# Create list of documents (when valid)
|
49 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
50 |
-
|
51 |
-
# Create collection_name for vector database
|
52 |
-
progress(0.1, desc="Creating collection name...")
|
53 |
collection_name = indexing.create_collection_name(list_file_path[0])
|
54 |
-
|
55 |
-
|
56 |
-
# Load document and create splits
|
57 |
-
doc_splits = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
|
58 |
-
|
59 |
-
# Create or load vector database
|
60 |
-
progress(0.5, desc="Generating vector database...")
|
61 |
-
|
62 |
-
# global vector_db
|
63 |
vector_db = indexing.create_db(doc_splits, collection_name)
|
|
|
64 |
|
65 |
-
return vector_db, collection_name, "Complete!"
|
66 |
|
67 |
-
|
68 |
-
# Initialize LLM
|
69 |
-
def initialize_llm(
|
70 |
-
llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()
|
71 |
-
):
|
72 |
-
"""Initialize LLM"""
|
73 |
-
|
74 |
-
# print("llm_option",llm_option)
|
75 |
llm_name = list_llm[llm_option]
|
76 |
-
print("llm_name: ", llm_name)
|
77 |
qa_chain = retrieval.initialize_llmchain(
|
78 |
llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
|
79 |
)
|
80 |
return qa_chain, "Complete!"
|
81 |
|
82 |
|
83 |
-
# Chatbot conversation
|
84 |
def conversation(qa_chain, message, history):
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(
|
88 |
-
qa_chain, message, history
|
89 |
-
)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
response_source3 = response_sources[2].page_content.strip()
|
95 |
-
# Langchain sources are zero-based
|
96 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
97 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
98 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
99 |
|
100 |
-
return (
|
101 |
-
qa_chain,
|
102 |
-
gr.update(value=""),
|
103 |
-
new_history,
|
104 |
-
response_source1,
|
105 |
-
response_source1_page,
|
106 |
-
response_source2,
|
107 |
-
response_source2_page,
|
108 |
-
response_source3,
|
109 |
-
response_source3_page,
|
110 |
-
)
|
111 |
-
|
112 |
-
|
113 |
-
SPACE_TITLE = """
|
114 |
-
<center><h2>PDF-based chatbot</center></h2>
|
115 |
-
<h3>Ask any questions about your PDF documents</h3>
|
116 |
-
"""
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
122 |
-
<br><b>Notes:</b> Updated space with more recent LLM models (Qwen 2.5, Llama 3.2, SmolLM2 series)
|
123 |
-
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
124 |
-
"""
|
125 |
|
126 |
|
127 |
-
# Gradio User Interface
|
128 |
def gradio_ui():
|
129 |
-
""
|
130 |
-
|
131 |
-
with gr.Blocks(theme="base") as demo:
|
132 |
vector_db = gr.State()
|
133 |
qa_chain = gr.State()
|
134 |
collection_name = gr.State()
|
135 |
|
136 |
-
gr.Markdown(
|
137 |
-
|
138 |
-
|
139 |
-
with gr.Tab("
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
)
|
183 |
-
with gr.Row():
|
184 |
-
db_btn = gr.Button("Generate vector database")
|
185 |
-
|
186 |
-
with gr.Tab("Step 3 - Initialize QA chain"):
|
187 |
-
with gr.Row():
|
188 |
-
llm_btn = gr.Radio(
|
189 |
-
list_llm_simple,
|
190 |
-
label="LLM models",
|
191 |
-
value=list_llm_simple[6],
|
192 |
-
type="index",
|
193 |
-
info="Choose your LLM model",
|
194 |
-
)
|
195 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
196 |
-
with gr.Row():
|
197 |
-
slider_temperature = gr.Slider(
|
198 |
-
minimum=0.01,
|
199 |
-
maximum=1.0,
|
200 |
-
value=0.7,
|
201 |
-
step=0.1,
|
202 |
-
label="Temperature",
|
203 |
-
info="Model temperature",
|
204 |
-
interactive=True,
|
205 |
-
)
|
206 |
-
with gr.Row():
|
207 |
-
slider_maxtokens = gr.Slider(
|
208 |
-
minimum=224,
|
209 |
-
maximum=4096,
|
210 |
-
value=1024,
|
211 |
-
step=32,
|
212 |
-
label="Max Tokens",
|
213 |
-
info="Model max tokens",
|
214 |
-
interactive=True,
|
215 |
-
)
|
216 |
-
with gr.Row():
|
217 |
-
slider_topk = gr.Slider(
|
218 |
-
minimum=1,
|
219 |
-
maximum=10,
|
220 |
-
value=3,
|
221 |
-
step=1,
|
222 |
-
label="top-k samples",
|
223 |
-
info="Model top-k samples",
|
224 |
-
interactive=True,
|
225 |
-
)
|
226 |
-
with gr.Row():
|
227 |
-
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
|
228 |
-
with gr.Row():
|
229 |
-
qachain_btn = gr.Button("Initialize Question Answering chain")
|
230 |
-
|
231 |
-
with gr.Tab("Step 4 - Chatbot"):
|
232 |
-
chatbot = gr.Chatbot(height=300, type="tuples")
|
233 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
234 |
-
with gr.Row():
|
235 |
-
doc_source1 = gr.Textbox(
|
236 |
-
label="Reference 1", lines=2, container=True, scale=20
|
237 |
-
)
|
238 |
-
source1_page = gr.Number(label="Page", scale=1)
|
239 |
-
with gr.Row():
|
240 |
-
doc_source2 = gr.Textbox(
|
241 |
-
label="Reference 2", lines=2, container=True, scale=20
|
242 |
-
)
|
243 |
-
source2_page = gr.Number(label="Page", scale=1)
|
244 |
-
with gr.Row():
|
245 |
-
doc_source3 = gr.Textbox(
|
246 |
-
label="Reference 3", lines=2, container=True, scale=20
|
247 |
-
)
|
248 |
-
source3_page = gr.Number(label="Page", scale=1)
|
249 |
-
with gr.Row():
|
250 |
-
msg = gr.Textbox(
|
251 |
-
placeholder="Type message (e.g. 'Can you summarize this document in one paragraph?')",
|
252 |
-
container=True,
|
253 |
-
)
|
254 |
-
with gr.Row():
|
255 |
-
submit_btn = gr.Button("Submit message")
|
256 |
-
clear_btn = gr.ClearButton(
|
257 |
-
components=[msg, chatbot], value="Clear conversation"
|
258 |
-
)
|
259 |
-
|
260 |
-
# Preprocessing events
|
261 |
-
db_btn.click(
|
262 |
-
initialize_database,
|
263 |
-
inputs=[document, slider_chunk_size, slider_chunk_overlap],
|
264 |
-
outputs=[vector_db, collection_name, db_progress],
|
265 |
-
)
|
266 |
-
qachain_btn.click(
|
267 |
-
initialize_llm,
|
268 |
-
inputs=[
|
269 |
-
llm_btn,
|
270 |
-
slider_temperature,
|
271 |
-
slider_maxtokens,
|
272 |
-
slider_topk,
|
273 |
-
vector_db,
|
274 |
-
],
|
275 |
-
outputs=[qa_chain, llm_progress],
|
276 |
-
).then(
|
277 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
278 |
-
inputs=None,
|
279 |
-
outputs=[
|
280 |
-
chatbot,
|
281 |
-
doc_source1,
|
282 |
-
source1_page,
|
283 |
-
doc_source2,
|
284 |
-
source2_page,
|
285 |
-
doc_source3,
|
286 |
-
source3_page,
|
287 |
-
],
|
288 |
-
queue=False,
|
289 |
-
)
|
290 |
-
|
291 |
-
# Chatbot events
|
292 |
-
msg.submit(
|
293 |
-
conversation,
|
294 |
-
inputs=[qa_chain, msg, chatbot],
|
295 |
-
outputs=[
|
296 |
-
qa_chain,
|
297 |
-
msg,
|
298 |
-
chatbot,
|
299 |
-
doc_source1,
|
300 |
-
source1_page,
|
301 |
-
doc_source2,
|
302 |
-
source2_page,
|
303 |
-
doc_source3,
|
304 |
-
source3_page,
|
305 |
-
],
|
306 |
-
queue=False,
|
307 |
-
)
|
308 |
-
submit_btn.click(
|
309 |
-
conversation,
|
310 |
-
inputs=[qa_chain, msg, chatbot],
|
311 |
-
outputs=[
|
312 |
-
qa_chain,
|
313 |
-
msg,
|
314 |
-
chatbot,
|
315 |
-
doc_source1,
|
316 |
-
source1_page,
|
317 |
-
doc_source2,
|
318 |
-
source2_page,
|
319 |
-
doc_source3,
|
320 |
-
source3_page,
|
321 |
-
],
|
322 |
-
queue=False,
|
323 |
-
)
|
324 |
-
clear_btn.click(
|
325 |
-
lambda: [None, "", 0, "", 0, "", 0],
|
326 |
-
inputs=None,
|
327 |
-
outputs=[
|
328 |
-
chatbot,
|
329 |
-
doc_source1,
|
330 |
-
source1_page,
|
331 |
-
doc_source2,
|
332 |
-
source2_page,
|
333 |
-
doc_source3,
|
334 |
-
source3_page,
|
335 |
-
],
|
336 |
-
queue=False,
|
337 |
-
)
|
338 |
-
demo.queue().launch(debug=True)
|
339 |
-
|
340 |
|
341 |
if __name__ == "__main__":
|
342 |
retrieve_api()
|
|
|
1 |
+
# ✅ Enhanced GenAI Assistant with:
|
2 |
+
# - PDF/TXT support
|
3 |
+
# - Ask Anything + Challenge Me modes
|
4 |
+
# - Auto Summary (<=150 words)
|
5 |
+
# - Memory handling
|
6 |
+
# - Reference highlighting
|
7 |
+
# - Stunning UI (Gradio upgraded)
|
8 |
+
|
9 |
+
# --- FILE: app.py ---
|
10 |
|
11 |
import os
|
12 |
import gradio as gr
|
|
|
13 |
from dotenv import load_dotenv
|
|
|
14 |
import indexing
|
15 |
import retrieval
|
16 |
+
import utils
|
17 |
|
|
|
|
|
18 |
list_llm = [
|
19 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
20 |
"microsoft/Phi-3.5-mini-instruct",
|
21 |
"meta-llama/Llama-3.1-8B-Instruct",
|
22 |
"meta-llama/Llama-3.2-3B-Instruct",
|
|
|
|
|
|
|
|
|
23 |
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
24 |
"google/gemma-2-2b-it",
|
|
|
|
|
25 |
"Qwen/Qwen2.5-3B-Instruct",
|
|
|
26 |
]
|
27 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
28 |
|
29 |
|
|
|
30 |
def retrieve_api():
|
31 |
+
load_dotenv()
|
|
|
32 |
global huggingfacehub_api_token
|
33 |
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
|
34 |
|
35 |
|
36 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
|
|
|
|
38 |
collection_name = indexing.create_collection_name(list_file_path[0])
|
39 |
+
doc_splits, full_text = indexing.load_doc(list_file_path, chunk_size, chunk_overlap)
|
40 |
+
summary = utils.generate_summary(full_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
vector_db = indexing.create_db(doc_splits, collection_name)
|
42 |
+
return vector_db, collection_name, summary, "Complete!"
|
43 |
|
|
|
44 |
|
45 |
+
def initialize_llm(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
llm_name = list_llm[llm_option]
|
|
|
47 |
qa_chain = retrieval.initialize_llmchain(
|
48 |
llm_name, huggingfacehub_api_token, llm_temperature, max_tokens, top_k, vector_db, progress
|
49 |
)
|
50 |
return qa_chain, "Complete!"
|
51 |
|
52 |
|
|
|
53 |
def conversation(qa_chain, message, history):
|
54 |
+
qa_chain, new_history, response_sources = retrieval.invoke_qa_chain(qa_chain, message, history)
|
55 |
+
highlights = utils.extract_highlight_snippets(response_sources)
|
56 |
+
return qa_chain, gr.update(value=""), new_history, *highlights
|
57 |
|
|
|
|
|
|
|
58 |
|
59 |
+
def challenge_me(qa_chain):
|
60 |
+
questions = utils.generate_challenge_questions(qa_chain)
|
61 |
+
return questions
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def evaluate_answers(qa_chain, questions, user_answers):
|
65 |
+
feedback = utils.evaluate_responses(qa_chain, questions, user_answers)
|
66 |
+
return feedback
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
|
|
69 |
def gradio_ui():
|
70 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), css="footer {display:none}") as demo:
|
|
|
|
|
71 |
vector_db = gr.State()
|
72 |
qa_chain = gr.State()
|
73 |
collection_name = gr.State()
|
74 |
|
75 |
+
gr.Markdown("""<h1 style='text-align:center;'>📚 GenAI Document Assistant</h1>
|
76 |
+
<h3 style='text-align:center;color:gray;'>Smart, interactive reading of research papers, legal docs, and more.</h3>""")
|
77 |
+
|
78 |
+
with gr.Tab("1️⃣ Upload Document"):
|
79 |
+
document = gr.File(label="Upload PDF or TXT", file_types=[".pdf", ".txt"], file_count="multiple")
|
80 |
+
slider_chunk_size = gr.Slider(100, 1000, value=600, step=20, label="Chunk Size")
|
81 |
+
slider_chunk_overlap = gr.Slider(10, 200, value=40, step=10, label="Chunk Overlap")
|
82 |
+
db_progress = gr.Textbox(label="Processing Status")
|
83 |
+
summary_box = gr.Textbox(label="Auto Summary (≤ 150 words)", lines=5)
|
84 |
+
db_btn = gr.Button("📥 Process Document")
|
85 |
+
|
86 |
+
with gr.Tab("2️⃣ QA Chain Initialization"):
|
87 |
+
llm_btn = gr.Radio(list_llm_simple, label="Select LLM", value=list_llm_simple[0], type="index")
|
88 |
+
slider_temperature = gr.Slider(0.01, 1.0, value=0.7, step=0.1, label="Temperature")
|
89 |
+
slider_maxtokens = gr.Slider(224, 4096, value=1024, step=32, label="Max Tokens")
|
90 |
+
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-K")
|
91 |
+
llm_progress = gr.Textbox(label="LLM Status")
|
92 |
+
qachain_btn = gr.Button("⚙️ Initialize QA Chain")
|
93 |
+
|
94 |
+
with gr.Tab("3️⃣ Ask Anything"):
|
95 |
+
chatbot = gr.Chatbot(height=300)
|
96 |
+
msg = gr.Textbox(placeholder="Ask a question from the document...")
|
97 |
+
submit_btn = gr.Button("💬 Ask")
|
98 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
99 |
+
ref1 = gr.Textbox(label="Reference 1")
|
100 |
+
ref2 = gr.Textbox(label="Reference 2")
|
101 |
+
ref3 = gr.Textbox(label="Reference 3")
|
102 |
+
|
103 |
+
with gr.Tab("4️⃣ Challenge Me"):
|
104 |
+
challenge_btn = gr.Button("🎯 Generate Questions")
|
105 |
+
q1 = gr.Textbox(label="Question 1")
|
106 |
+
a1 = gr.Textbox(label="Your Answer 1")
|
107 |
+
q2 = gr.Textbox(label="Question 2")
|
108 |
+
a2 = gr.Textbox(label="Your Answer 2")
|
109 |
+
q3 = gr.Textbox(label="Question 3")
|
110 |
+
a3 = gr.Textbox(label="Your Answer 3")
|
111 |
+
eval_btn = gr.Button("✅ Submit Answers")
|
112 |
+
feedback = gr.Textbox(label="Feedback", lines=5)
|
113 |
+
|
114 |
+
db_btn.click(initialize_database, [document, slider_chunk_size, slider_chunk_overlap], [vector_db, collection_name, summary_box, db_progress])
|
115 |
+
qachain_btn.click(initialize_llm, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress])
|
116 |
+
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot, ref1, ref2, ref3])
|
117 |
+
challenge_btn.click(challenge_me, [qa_chain], [q1, q2, q3])
|
118 |
+
eval_btn.click(evaluate_answers, [qa_chain, [q1, q2, q3], [a1, a2, a3]], [feedback])
|
119 |
+
|
120 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
retrieve_api()
|