Video_Summ / app.py
JaganathC's picture
Update app.py
9431860 verified
raw
history blame
5.4 kB
import streamlit as st
from phi.agent import Agent
from phi.model.google import Gemini
from phi.tools.duckduckgo import DuckDuckGo
from google.generativeai import upload_file, get_file
import google.generativeai as genai
import time
from pathlib import Path
import tempfile
from dotenv import load_dotenv
import os
from phi.model.groq import Groq
from phi.tools.youtube_tools import YouTubeTools
# Load environment variables
load_dotenv()
# Configure API keys
API_KEY = os.getenv("GOOGLE_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
if API_KEY:
genai.configure(api_key=API_KEY)
# Page configuration
st.set_page_config(
page_title="Multimodal AI Applications",
page_icon="🌐",
layout="wide"
)
# Custom CSS for UI Styling
def load_custom_css():
st.markdown(
"""
<style>
.stButton>button {
width: 100%;
height: 50px;
font-size: 18px;
font-weight: bold;
background: rgba(255, 255, 255, 0.2);
border-radius: 12px;
border: 2px solid rgba(255, 255, 255, 0.5);
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2);
}
.stTextInput>div>div>input, .stTextArea>div>textarea {
background: rgba(255, 255, 255, 0.1);
border-radius: 8px;
border: 1px solid rgba(255, 255, 255, 0.3);
color: white;
padding: 10px;
}
</style>
""",
unsafe_allow_html=True
)
load_custom_css()
st.markdown("# 🎥 Video Transcription and AI Summary")
st.markdown("Upload a video or provide a YouTube link to get a transcription and AI-generated summary.")
# Tabs for the two applications
tab1, tab2 = st.tabs(["📤 Video Upload", "🔗 YouTube Video Analysis"])
# Tab 1: Video Summarizer with Gemini
with tab1:
st.subheader("Phidata Video AI Summarizer Agent 🎥")
@st.cache_resource
def initialize_agent():
return Agent(
name="Video AI Summarizer",
model=Gemini(id="gemini-2.0-flash-exp"),
tools=[DuckDuckGo()],
markdown=True,
)
multimodal_Agent = initialize_agent()
video_file = st.file_uploader("Upload a video file", type=['mp4'])
if video_file:
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video:
temp_video.write(video_file.read())
video_path = temp_video.name
st.video(video_path, format="video/mp4", start_time=0)
user_query = st.text_area("What insights are you seeking from the video?", "")
if st.button("🚀 Analyze Video", key="analyze_video_button"):
if not user_query:
st.warning("Please enter a question or insight to analyze the video.")
else:
try:
with st.spinner("Processing video..."):
processed_video = upload_file(video_path)
while processed_video.state.name == "PROCESSING":
time.sleep(1)
processed_video = get_file(processed_video.name)
prompt = f"""
Analyze the uploaded video and provide a summary.
Respond to: {user_query}
"""
response = multimodal_Agent.run(prompt, videos=[processed_video])
st.subheader("Analysis Result")
st.markdown(response.content)
except Exception as error:
st.error(f"Error: {error}")
finally:
Path(video_path).unlink(missing_ok=True)
else:
st.info("Upload a video file to begin analysis.")
# Tab 2: YouTube Video Analyzer with Groq
with tab2:
st.subheader("YouTube Video Analyzer 🎬")
try:
youtube_agent = Agent(
model=Groq(id="llama3-8b-8192", api_key=groq_api_key),
tools=[YouTubeTools(), DuckDuckGo()],
show_tool_calls=True,
get_video_captions=True,
get_video_data=True,
description="Analyze YouTube videos for content, key points, and web research.",
)
except Exception as e:
st.error(f"Error initializing the agent: {e}")
st.stop()
video_url = st.text_input("Enter YouTube Video URL:", "")
user_query = st.text_area("Enter your question about the video (optional):", "")
if st.button("✨ Analyze Video", key="analyze_video_button"):
if video_url:
with st.spinner("Analyzing..."):
try:
prompt = f"""
Analyze the YouTube video.
Provide a detailed summary with key points.
{f'Respond to: {user_query}' if user_query else ''}
Video URL: {video_url}
"""
output = youtube_agent.run(prompt)
st.subheader("Analysis Result")
st.markdown(output.content)
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a YouTube video URL.")