Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import json
|
|
7 |
import time
|
8 |
import langdetect
|
9 |
import uuid
|
10 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
|
12 |
# Load Hugging Face Token
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -15,12 +15,19 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
15 |
print("Starting the program...")
|
16 |
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
17 |
|
18 |
-
#
|
|
|
|
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
print(f"Using device: {device}")
|
21 |
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
23 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
24 |
print("Model successfully loaded.")
|
25 |
|
26 |
def generate_unique_filename(extension):
|
@@ -33,40 +40,42 @@ def cleanup_files(*files):
|
|
33 |
print(f"Removed file: {file}")
|
34 |
|
35 |
def download_youtube_audio(url):
|
|
|
36 |
print(f"Downloading audio from YouTube: {url}")
|
37 |
output_path = generate_unique_filename(".wav")
|
38 |
-
|
39 |
ydl_opts = {
|
40 |
'format': 'bestaudio/best',
|
41 |
'postprocessors': [{
|
42 |
'key': 'FFmpegExtractAudio',
|
43 |
'preferredcodec': 'wav',
|
|
|
44 |
}],
|
45 |
'outtmpl': output_path,
|
46 |
}
|
47 |
-
|
48 |
try:
|
49 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
50 |
ydl.download([url])
|
|
|
|
|
51 |
except Exception as e:
|
52 |
return f"Error downloading audio: {str(e)}"
|
53 |
|
54 |
-
if os.path.exists(output_path
|
55 |
-
os.rename(output_path + ".wav", output_path)
|
56 |
-
|
57 |
-
return output_path
|
58 |
|
59 |
def transcribe_audio(file_path):
|
|
|
60 |
print(f"Starting transcription of file: {file_path}")
|
61 |
temp_audio = None
|
62 |
-
|
63 |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
64 |
print("Video file detected. Extracting audio using ffmpeg...")
|
65 |
temp_audio = generate_unique_filename(".wav")
|
66 |
command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio]
|
67 |
subprocess.run(command, check=True)
|
68 |
-
file_path = temp_audio
|
69 |
-
|
70 |
output_file = generate_unique_filename(".json")
|
71 |
command = [
|
72 |
"insanely-fast-whisper",
|
@@ -77,47 +86,61 @@ def transcribe_audio(file_path):
|
|
77 |
"--timestamp", "chunk",
|
78 |
"--transcript-path", output_file
|
79 |
]
|
80 |
-
|
81 |
try:
|
82 |
subprocess.run(command, check=True)
|
83 |
except Exception as e:
|
84 |
return f"Error in transcription: {str(e)}"
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
cleanup_files(output_file)
|
92 |
if temp_audio:
|
93 |
cleanup_files(temp_audio)
|
94 |
|
95 |
-
return result
|
96 |
|
97 |
def generate_summary_stream(transcription):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def process_youtube(url):
|
|
|
109 |
if not url:
|
110 |
return "Please enter a YouTube URL.", None
|
111 |
-
|
112 |
audio_file = download_youtube_audio(url)
|
113 |
-
if "Error" in audio_file:
|
114 |
return audio_file, None
|
115 |
-
|
116 |
transcription = transcribe_audio(audio_file)
|
117 |
-
cleanup_files(audio_file)
|
118 |
return transcription, None
|
119 |
|
120 |
def process_uploaded_video(video_path):
|
|
|
121 |
transcription = transcribe_audio(video_path)
|
122 |
return transcription, None
|
123 |
|
@@ -126,7 +149,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
126 |
# 🎥 Video Transcription and Smart Summary
|
127 |
Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
|
128 |
""")
|
129 |
-
|
130 |
with gr.Tabs():
|
131 |
with gr.TabItem("📤 Video Upload"):
|
132 |
video_input = gr.Video()
|
@@ -135,11 +158,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
135 |
with gr.TabItem("🔗 YouTube Link"):
|
136 |
url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...")
|
137 |
url_button = gr.Button("🚀 Process URL")
|
138 |
-
|
139 |
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
|
140 |
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
|
141 |
summary_button = gr.Button("📝 Generate Summary")
|
142 |
-
|
143 |
video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
|
144 |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
145 |
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|
|
|
7 |
import time
|
8 |
import langdetect
|
9 |
import uuid
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
11 |
|
12 |
# Load Hugging Face Token
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
15 |
print("Starting the program...")
|
16 |
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
17 |
|
18 |
+
# **Efficient Model Loading**
|
19 |
+
bnb_config = BitsAndBytesConfig(load_in_8bit=True) # Use 8-bit precision to reduce memory usage
|
20 |
+
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
print(f"Using device: {device}")
|
23 |
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_path,
|
27 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
28 |
+
quantization_config=bnb_config, # Load in 8-bit to save memory
|
29 |
+
trust_remote_code=True
|
30 |
+
).to(device).eval()
|
31 |
print("Model successfully loaded.")
|
32 |
|
33 |
def generate_unique_filename(extension):
|
|
|
40 |
print(f"Removed file: {file}")
|
41 |
|
42 |
def download_youtube_audio(url):
|
43 |
+
"""Downloads audio from a YouTube video and converts it to WAV format."""
|
44 |
print(f"Downloading audio from YouTube: {url}")
|
45 |
output_path = generate_unique_filename(".wav")
|
46 |
+
|
47 |
ydl_opts = {
|
48 |
'format': 'bestaudio/best',
|
49 |
'postprocessors': [{
|
50 |
'key': 'FFmpegExtractAudio',
|
51 |
'preferredcodec': 'wav',
|
52 |
+
'preferredquality': '192',
|
53 |
}],
|
54 |
'outtmpl': output_path,
|
55 |
}
|
56 |
+
|
57 |
try:
|
58 |
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
59 |
ydl.download([url])
|
60 |
+
if os.path.exists(output_path + ".wav"):
|
61 |
+
os.rename(output_path + ".wav", output_path) # Ensure correct naming
|
62 |
except Exception as e:
|
63 |
return f"Error downloading audio: {str(e)}"
|
64 |
|
65 |
+
return output_path if os.path.exists(output_path) else "Download Failed"
|
|
|
|
|
|
|
66 |
|
67 |
def transcribe_audio(file_path):
|
68 |
+
"""Transcribes audio using `insanely-fast-whisper` and handles large files efficiently."""
|
69 |
print(f"Starting transcription of file: {file_path}")
|
70 |
temp_audio = None
|
71 |
+
|
72 |
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
73 |
print("Video file detected. Extracting audio using ffmpeg...")
|
74 |
temp_audio = generate_unique_filename(".wav")
|
75 |
command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio]
|
76 |
subprocess.run(command, check=True)
|
77 |
+
file_path = temp_audio # Use extracted audio file
|
78 |
+
|
79 |
output_file = generate_unique_filename(".json")
|
80 |
command = [
|
81 |
"insanely-fast-whisper",
|
|
|
86 |
"--timestamp", "chunk",
|
87 |
"--transcript-path", output_file
|
88 |
]
|
89 |
+
|
90 |
try:
|
91 |
subprocess.run(command, check=True)
|
92 |
except Exception as e:
|
93 |
return f"Error in transcription: {str(e)}"
|
94 |
|
95 |
+
# Process the JSON file in chunks to avoid memory overflow
|
96 |
+
result = []
|
97 |
+
try:
|
98 |
+
with open(output_file, "r") as f:
|
99 |
+
for line in f:
|
100 |
+
chunk = json.loads(line.strip()) # Read JSON line by line
|
101 |
+
result.append(chunk.get("text", ""))
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error reading transcription file: {str(e)}"
|
104 |
+
|
105 |
cleanup_files(output_file)
|
106 |
if temp_audio:
|
107 |
cleanup_files(temp_audio)
|
108 |
|
109 |
+
return " ".join(result)[:500000] # Limit transcription size
|
110 |
|
111 |
def generate_summary_stream(transcription):
|
112 |
+
"""Summarizes the transcription efficiently to avoid memory overflow."""
|
113 |
+
detected_language = langdetect.detect(transcription[:1000]) # Detect using a smaller portion
|
114 |
+
|
115 |
+
# Use smaller chunks for processing
|
116 |
+
chunk_size = 2000
|
117 |
+
transcript_chunks = [transcription[i:i+chunk_size] for i in range(0, len(transcription), chunk_size)]
|
118 |
+
summary_result = []
|
119 |
+
|
120 |
+
for chunk in transcript_chunks[:3]: # Process only the first 3 chunks to avoid OOM
|
121 |
+
prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:\n{chunk}"""
|
122 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
123 |
+
output_ids = model.generate(input_ids, max_length=300) # Limit output size
|
124 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
125 |
+
summary_result.append(response)
|
126 |
+
|
127 |
+
return "\n\n".join(summary_result)
|
128 |
|
129 |
def process_youtube(url):
|
130 |
+
"""Handles YouTube video processing: downloads audio, transcribes it, and cleans up."""
|
131 |
if not url:
|
132 |
return "Please enter a YouTube URL.", None
|
133 |
+
|
134 |
audio_file = download_youtube_audio(url)
|
135 |
+
if "Error" in audio_file or audio_file == "Download Failed":
|
136 |
return audio_file, None
|
137 |
+
|
138 |
transcription = transcribe_audio(audio_file)
|
139 |
+
cleanup_files(audio_file) # Clean up the downloaded file
|
140 |
return transcription, None
|
141 |
|
142 |
def process_uploaded_video(video_path):
|
143 |
+
"""Processes uploaded video file for transcription."""
|
144 |
transcription = transcribe_audio(video_path)
|
145 |
return transcription, None
|
146 |
|
|
|
149 |
# 🎥 Video Transcription and Smart Summary
|
150 |
Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
|
151 |
""")
|
152 |
+
|
153 |
with gr.Tabs():
|
154 |
with gr.TabItem("📤 Video Upload"):
|
155 |
video_input = gr.Video()
|
|
|
158 |
with gr.TabItem("🔗 YouTube Link"):
|
159 |
url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...")
|
160 |
url_button = gr.Button("🚀 Process URL")
|
161 |
+
|
162 |
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
|
163 |
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
|
164 |
summary_button = gr.Button("📝 Generate Summary")
|
165 |
+
|
166 |
video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
|
167 |
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
168 |
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|