JaganathC commited on
Commit
a4ecef9
·
verified ·
1 Parent(s): 083a014

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -128
app.py CHANGED
@@ -7,7 +7,6 @@ import json
7
  from threading import Thread
8
  from transformers import AutoTokenizer, AutoModelForCausalLM
9
  import spaces
10
- import moviepy.editor as mp
11
  import time
12
  import langdetect
13
  import uuid
@@ -46,35 +45,20 @@ def download_youtube_audio(url):
46
  with yt_dlp.YoutubeDL(ydl_opts) as ydl:
47
  ydl.download([url])
48
 
49
- # Check if the file was renamed to .wav.wav
50
  if os.path.exists(output_path + ".wav"):
51
  os.rename(output_path + ".wav", output_path)
52
 
53
- if os.path.exists(output_path):
54
- print(f"Audio download completed. File saved at: {output_path}")
55
- print(f"File size: {os.path.getsize(output_path)} bytes")
56
- else:
57
- print(f"Error: File {output_path} not found after download.")
58
-
59
  return output_path
60
 
61
-
62
  def transcribe_audio(file_path):
63
  print(f"Starting transcription of file: {file_path}")
64
  temp_audio = None
65
  if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
66
- print("Video file detected. Extracting audio...")
67
- try:
68
- video = mp.VideoFileClip(file_path)
69
- temp_audio = generate_unique_filename(".wav")
70
- video.audio.write_audiofile(temp_audio)
71
- file_path = temp_audio
72
- except Exception as e:
73
- print(f"Error extracting audio from video: {e}")
74
- raise
75
-
76
- print(f"Does the file exist? {os.path.exists(file_path)}")
77
- print(f"File size: {os.path.getsize(file_path) if os.path.exists(file_path) else 'N/A'} bytes")
78
 
79
  output_file = generate_unique_filename(".json")
80
  command = [
@@ -86,143 +70,60 @@ def transcribe_audio(file_path):
86
  "--timestamp", "chunk",
87
  "--transcript-path", output_file
88
  ]
89
- print(f"Executing command: {' '.join(command)}")
90
- try:
91
- result = subprocess.run(command, check=True, capture_output=True, text=True)
92
- print(f"Standard output: {result.stdout}")
93
- print(f"Error output: {result.stderr}")
94
- except subprocess.CalledProcessError as e:
95
- print(f"Error running insanely-fast-whisper: {e}")
96
- print(f"Standard output: {e.stdout}")
97
- print(f"Error output: {e.stderr}")
98
- raise
99
-
100
- print(f"Reading transcription file: {output_file}")
101
- try:
102
- with open(output_file, "r") as f:
103
- transcription = json.load(f)
104
- except json.JSONDecodeError as e:
105
- print(f"Error decoding JSON: {e}")
106
- print(f"File content: {open(output_file, 'r').read()}")
107
- raise
108
 
109
- if "text" in transcription:
110
- result = transcription["text"]
111
- else:
112
- result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
113
 
114
- print("Transcription completed.")
115
 
116
- # Cleanup
117
  cleanup_files(output_file)
118
  if temp_audio:
119
  cleanup_files(temp_audio)
120
 
121
  return result
122
 
123
- @spaces.GPU(duration=90)
124
  def generate_summary_stream(transcription):
125
- print("Starting summary generation...")
126
- print(f"Transcription length: {len(transcription)} characters")
127
-
128
  detected_language = langdetect.detect(transcription)
129
-
130
- prompt = f"""Summarize the following video transcription in 150-300 words.
131
- The summary should be in the same language as the transcription, which is detected as {detected_language}.
132
- Please ensure that the summary captures the main points and key ideas of the transcription:
133
-
134
  {transcription[:300000]}..."""
135
 
136
  response, history = model.chat(tokenizer, prompt, history=[])
137
- print(f"Final summary generated: {response[:100]}...")
138
- print("Summary generation completed.")
139
  return response
140
 
141
  def process_youtube(url):
142
  if not url:
143
- print("YouTube URL not provided.")
144
  return "Please enter a YouTube URL.", None
145
- print(f"Processing YouTube URL: {url}")
146
-
147
- audio_file = None
148
- try:
149
- audio_file = download_youtube_audio(url)
150
- if not os.path.exists(audio_file):
151
- raise FileNotFoundError(f"File {audio_file} does not exist after download.")
152
-
153
- print(f"Audio file found: {audio_file}")
154
- print("Starting transcription...")
155
- transcription = transcribe_audio(audio_file)
156
- print(f"Transcription completed. Length: {len(transcription)} characters")
157
- return transcription, None
158
- except Exception as e:
159
- print(f"Error processing YouTube: {e}")
160
- return f"Processing error: {str(e)}", None
161
- finally:
162
- if audio_file and os.path.exists(audio_file):
163
- cleanup_files(audio_file)
164
- print(f"Directory content after processing: {os.listdir('.')}")
165
 
166
  def process_uploaded_video(video_path):
167
- print(f"Processing uploaded video: {video_path}")
168
- try:
169
- print("Starting transcription...")
170
- transcription = transcribe_audio(video_path)
171
- print(f"Transcription completed. Length: {len(transcription)} characters")
172
- return transcription, None
173
- except Exception as e:
174
- print(f"Error processing video: {e}")
175
- return f"Processing error: {str(e)}", None
176
 
177
- print("Setting up Gradio interface...")
178
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
179
- gr.Markdown(
180
- """
181
- # 🎥 Video Transcription and Smart Summary
182
-
183
- Upload a video or provide a YouTube link to get a transcription and AI-generated summary. HF Zero GPU has a usage time limit. So if you want to run longer videos I recommend you clone the space. Remove @Spaces.gpu from the code and run it locally on your GPU!
184
- """
185
- )
186
 
187
  with gr.Tabs():
188
  with gr.TabItem("📤 Video Upload"):
189
- video_input = gr.Video(label="Drag and drop or click to upload")
190
- video_button = gr.Button("🚀 Process Video", variant="primary")
191
 
192
  with gr.TabItem("🔗 YouTube Link"):
193
- url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...")
194
- url_button = gr.Button("🚀 Process URL", variant="primary")
195
-
196
- with gr.Row():
197
- with gr.Column():
198
- transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
199
- with gr.Column():
200
- summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
201
 
202
- summary_button = gr.Button("📝 Generate Summary", variant="secondary")
 
 
203
 
204
- gr.Markdown(
205
- """
206
- ### How to use:
207
- 1. Upload a video or paste a YouTube link.
208
- 2. Click 'Process' to get the transcription.
209
- 3. Click 'Generate Summary' to get a summary of the content.
210
-
211
- *Note: Processing may take a few minutes depending on the video length.*
212
- """
213
- )
214
-
215
- def process_video_and_update(video):
216
- if video is None:
217
- return "No video uploaded.", "Please upload a video."
218
- print(f"Video received: {video}")
219
- transcription, _ = process_uploaded_video(video)
220
- print(f"Returned transcription: {transcription[:100] if transcription else 'No transcription generated'}...")
221
- return transcription or "Transcription error", ""
222
-
223
- video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
224
  url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
225
  summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
226
 
227
- print("Launching Gradio interface...")
228
- demo.launch()
 
7
  from threading import Thread
8
  from transformers import AutoTokenizer, AutoModelForCausalLM
9
  import spaces
 
10
  import time
11
  import langdetect
12
  import uuid
 
45
  with yt_dlp.YoutubeDL(ydl_opts) as ydl:
46
  ydl.download([url])
47
 
 
48
  if os.path.exists(output_path + ".wav"):
49
  os.rename(output_path + ".wav", output_path)
50
 
 
 
 
 
 
 
51
  return output_path
52
 
 
53
  def transcribe_audio(file_path):
54
  print(f"Starting transcription of file: {file_path}")
55
  temp_audio = None
56
  if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
57
+ print("Video file detected. Extracting audio using ffmpeg...")
58
+ temp_audio = generate_unique_filename(".wav")
59
+ command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio]
60
+ subprocess.run(command, check=True)
61
+ file_path = temp_audio
 
 
 
 
 
 
 
62
 
63
  output_file = generate_unique_filename(".json")
64
  command = [
 
70
  "--timestamp", "chunk",
71
  "--transcript-path", output_file
72
  ]
73
+ subprocess.run(command, check=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ with open(output_file, "r") as f:
76
+ transcription = json.load(f)
 
 
77
 
78
+ result = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]))
79
 
 
80
  cleanup_files(output_file)
81
  if temp_audio:
82
  cleanup_files(temp_audio)
83
 
84
  return result
85
 
 
86
  def generate_summary_stream(transcription):
 
 
 
87
  detected_language = langdetect.detect(transcription)
88
+ prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:
 
 
 
 
89
  {transcription[:300000]}..."""
90
 
91
  response, history = model.chat(tokenizer, prompt, history=[])
 
 
92
  return response
93
 
94
  def process_youtube(url):
95
  if not url:
 
96
  return "Please enter a YouTube URL.", None
97
+ audio_file = download_youtube_audio(url)
98
+ transcription = transcribe_audio(audio_file)
99
+ cleanup_files(audio_file)
100
+ return transcription, None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
  def process_uploaded_video(video_path):
103
+ transcription = transcribe_audio(video_path)
104
+ return transcription, None
 
 
 
 
 
 
 
105
 
 
106
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
107
+ gr.Markdown("""
108
+ # 🎥 Video Transcription and Smart Summary
109
+ Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
110
+ """)
 
 
 
111
 
112
  with gr.Tabs():
113
  with gr.TabItem("📤 Video Upload"):
114
+ video_input = gr.Video()
115
+ video_button = gr.Button("🚀 Process Video")
116
 
117
  with gr.TabItem("🔗 YouTube Link"):
118
+ url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...")
119
+ url_button = gr.Button("🚀 Process URL")
 
 
 
 
 
 
120
 
121
+ transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
122
+ summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
123
+ summary_button = gr.Button("📝 Generate Summary")
124
 
125
+ video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
127
  summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
128
 
129
+ demo.launch()