Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import yt_dlp
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
import json
|
7 |
+
from threading import Thread
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
import spaces
|
10 |
+
import time
|
11 |
+
import langdetect
|
12 |
+
import uuid
|
13 |
+
|
14 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
+
print("Starting the program...")
|
16 |
+
|
17 |
+
model_path = "Qwen/Qwen2.5-7B-Instruct"
|
18 |
+
print(f"Loading model {model_path}...")
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
21 |
+
model = model.eval()
|
22 |
+
print("Model successfully loaded.")
|
23 |
+
|
24 |
+
def generate_unique_filename(extension):
|
25 |
+
return f"{uuid.uuid4()}{extension}"
|
26 |
+
|
27 |
+
def cleanup_files(*files):
|
28 |
+
for file in files:
|
29 |
+
if file and os.path.exists(file):
|
30 |
+
os.remove(file)
|
31 |
+
print(f"Removed file: {file}")
|
32 |
+
|
33 |
+
def download_youtube_audio(url):
|
34 |
+
print(f"Downloading audio from YouTube: {url}")
|
35 |
+
output_path = generate_unique_filename(".wav")
|
36 |
+
ydl_opts = {
|
37 |
+
'format': 'bestaudio/best',
|
38 |
+
'postprocessors': [{
|
39 |
+
'key': 'FFmpegExtractAudio',
|
40 |
+
'preferredcodec': 'wav',
|
41 |
+
}],
|
42 |
+
'outtmpl': output_path,
|
43 |
+
'keepvideo': True,
|
44 |
+
}
|
45 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
46 |
+
ydl.download([url])
|
47 |
+
|
48 |
+
if os.path.exists(output_path + ".wav"):
|
49 |
+
os.rename(output_path + ".wav", output_path)
|
50 |
+
|
51 |
+
return output_path
|
52 |
+
|
53 |
+
@spaces.GPU(duration=90)
|
54 |
+
def transcribe_audio(file_path):
|
55 |
+
print(f"Starting transcription of file: {file_path}")
|
56 |
+
temp_audio = None
|
57 |
+
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
58 |
+
print("Video file detected. Extracting audio using ffmpeg...")
|
59 |
+
temp_audio = generate_unique_filename(".wav")
|
60 |
+
command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio]
|
61 |
+
subprocess.run(command, check=True)
|
62 |
+
file_path = temp_audio
|
63 |
+
|
64 |
+
output_file = generate_unique_filename(".json")
|
65 |
+
command = [
|
66 |
+
"insanely-fast-whisper",
|
67 |
+
"--file-name", file_path,
|
68 |
+
"--device-id", "0",
|
69 |
+
"--model-name", "openai/whisper-large-v3",
|
70 |
+
"--task", "transcribe",
|
71 |
+
"--timestamp", "chunk",
|
72 |
+
"--transcript-path", output_file
|
73 |
+
]
|
74 |
+
subprocess.run(command, check=True)
|
75 |
+
|
76 |
+
with open(output_file, "r") as f:
|
77 |
+
transcription = json.load(f)
|
78 |
+
|
79 |
+
result = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]))
|
80 |
+
|
81 |
+
cleanup_files(output_file)
|
82 |
+
if temp_audio:
|
83 |
+
cleanup_files(temp_audio)
|
84 |
+
|
85 |
+
return result
|
86 |
+
|
87 |
+
def generate_summary_stream(transcription):
|
88 |
+
detected_language = langdetect.detect(transcription)
|
89 |
+
prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:
|
90 |
+
{transcription[:300000]}..."""
|
91 |
+
|
92 |
+
response, history = model.chat(tokenizer, prompt, history=[])
|
93 |
+
return response
|
94 |
+
|
95 |
+
def process_youtube(url):
|
96 |
+
if not url:
|
97 |
+
return "Please enter a YouTube URL.", None
|
98 |
+
audio_file = download_youtube_audio(url)
|
99 |
+
transcription = transcribe_audio(audio_file)
|
100 |
+
cleanup_files(audio_file)
|
101 |
+
return transcription, None
|
102 |
+
|
103 |
+
def process_uploaded_video(video_path):
|
104 |
+
transcription = transcribe_audio(video_path)
|
105 |
+
return transcription, None
|
106 |
+
|
107 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
108 |
+
gr.Markdown("""
|
109 |
+
# 🎥 Video Transcription and Smart Summary
|
110 |
+
Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
|
111 |
+
""")
|
112 |
+
|
113 |
+
with gr.Tabs():
|
114 |
+
with gr.TabItem("📤 Video Upload"):
|
115 |
+
video_input = gr.Video()
|
116 |
+
video_button = gr.Button("🚀 Process Video")
|
117 |
+
|
118 |
+
with gr.TabItem("🔗 YouTube Link"):
|
119 |
+
url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...")
|
120 |
+
url_button = gr.Button("🚀 Process URL")
|
121 |
+
|
122 |
+
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
|
123 |
+
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
|
124 |
+
summary_button = gr.Button("📝 Generate Summary")
|
125 |
+
|
126 |
+
video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
|
127 |
+
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
128 |
+
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|
129 |
+
|
130 |
+
demo.launch()
|