JaganathC commited on
Commit
a6eae86
·
verified ·
1 Parent(s): e74efd9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +130 -0
app.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import yt_dlp
4
+ import os
5
+ import subprocess
6
+ import json
7
+ from threading import Thread
8
+ from transformers import AutoTokenizer, AutoModelForCausalLM
9
+ import spaces
10
+ import time
11
+ import langdetect
12
+ import uuid
13
+
14
+ HF_TOKEN = os.environ.get("HF_TOKEN")
15
+ print("Starting the program...")
16
+
17
+ model_path = "Qwen/Qwen2.5-7B-Instruct"
18
+ print(f"Loading model {model_path}...")
19
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
20
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
21
+ model = model.eval()
22
+ print("Model successfully loaded.")
23
+
24
+ def generate_unique_filename(extension):
25
+ return f"{uuid.uuid4()}{extension}"
26
+
27
+ def cleanup_files(*files):
28
+ for file in files:
29
+ if file and os.path.exists(file):
30
+ os.remove(file)
31
+ print(f"Removed file: {file}")
32
+
33
+ def download_youtube_audio(url):
34
+ print(f"Downloading audio from YouTube: {url}")
35
+ output_path = generate_unique_filename(".wav")
36
+ ydl_opts = {
37
+ 'format': 'bestaudio/best',
38
+ 'postprocessors': [{
39
+ 'key': 'FFmpegExtractAudio',
40
+ 'preferredcodec': 'wav',
41
+ }],
42
+ 'outtmpl': output_path,
43
+ 'keepvideo': True,
44
+ }
45
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
46
+ ydl.download([url])
47
+
48
+ if os.path.exists(output_path + ".wav"):
49
+ os.rename(output_path + ".wav", output_path)
50
+
51
+ return output_path
52
+
53
+ @spaces.GPU(duration=90)
54
+ def transcribe_audio(file_path):
55
+ print(f"Starting transcription of file: {file_path}")
56
+ temp_audio = None
57
+ if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
58
+ print("Video file detected. Extracting audio using ffmpeg...")
59
+ temp_audio = generate_unique_filename(".wav")
60
+ command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio]
61
+ subprocess.run(command, check=True)
62
+ file_path = temp_audio
63
+
64
+ output_file = generate_unique_filename(".json")
65
+ command = [
66
+ "insanely-fast-whisper",
67
+ "--file-name", file_path,
68
+ "--device-id", "0",
69
+ "--model-name", "openai/whisper-large-v3",
70
+ "--task", "transcribe",
71
+ "--timestamp", "chunk",
72
+ "--transcript-path", output_file
73
+ ]
74
+ subprocess.run(command, check=True)
75
+
76
+ with open(output_file, "r") as f:
77
+ transcription = json.load(f)
78
+
79
+ result = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]))
80
+
81
+ cleanup_files(output_file)
82
+ if temp_audio:
83
+ cleanup_files(temp_audio)
84
+
85
+ return result
86
+
87
+ def generate_summary_stream(transcription):
88
+ detected_language = langdetect.detect(transcription)
89
+ prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:
90
+ {transcription[:300000]}..."""
91
+
92
+ response, history = model.chat(tokenizer, prompt, history=[])
93
+ return response
94
+
95
+ def process_youtube(url):
96
+ if not url:
97
+ return "Please enter a YouTube URL.", None
98
+ audio_file = download_youtube_audio(url)
99
+ transcription = transcribe_audio(audio_file)
100
+ cleanup_files(audio_file)
101
+ return transcription, None
102
+
103
+ def process_uploaded_video(video_path):
104
+ transcription = transcribe_audio(video_path)
105
+ return transcription, None
106
+
107
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
108
+ gr.Markdown("""
109
+ # 🎥 Video Transcription and Smart Summary
110
+ Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
111
+ """)
112
+
113
+ with gr.Tabs():
114
+ with gr.TabItem("📤 Video Upload"):
115
+ video_input = gr.Video()
116
+ video_button = gr.Button("🚀 Process Video")
117
+
118
+ with gr.TabItem("🔗 YouTube Link"):
119
+ url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...")
120
+ url_button = gr.Button("🚀 Process URL")
121
+
122
+ transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
123
+ summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
124
+ summary_button = gr.Button("📝 Generate Summary")
125
+
126
+ video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output])
127
+ url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
128
+ summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
129
+
130
+ demo.launch()