import gradio as gr import torch import yt_dlp import os import subprocess import json import time import langdetect import uuid from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig # Load Hugging Face Token HF_TOKEN = os.getenv("HF_TOKEN") print("Starting the program...") model_path = "Qwen/Qwen2.5-7B-Instruct" # **Efficient Model Loading** bnb_config = BitsAndBytesConfig(load_in_8bit=True) # Use 8-bit precision to reduce memory usage device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, quantization_config=bnb_config, # Load in 8-bit to save memory trust_remote_code=True ).to(device).eval() print("Model successfully loaded.") def generate_unique_filename(extension): return f"{uuid.uuid4()}{extension}" def cleanup_files(*files): for file in files: if file and os.path.exists(file): os.remove(file) print(f"Removed file: {file}") def download_youtube_audio(url): """Downloads audio from a YouTube video and converts it to WAV format.""" print(f"Downloading audio from YouTube: {url}") output_path = generate_unique_filename(".wav") ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', 'preferredquality': '192', }], 'outtmpl': output_path, } try: with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) if os.path.exists(output_path + ".wav"): os.rename(output_path + ".wav", output_path) # Ensure correct naming except Exception as e: return f"Error downloading audio: {str(e)}" return output_path if os.path.exists(output_path) else "Download Failed" def transcribe_audio(file_path): """Transcribes audio using `insanely-fast-whisper` and handles large files efficiently.""" print(f"Starting transcription of file: {file_path}") temp_audio = None if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): print("Video file detected. Extracting audio using ffmpeg...") temp_audio = generate_unique_filename(".wav") command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio] subprocess.run(command, check=True) file_path = temp_audio # Use extracted audio file output_file = generate_unique_filename(".json") command = [ "insanely-fast-whisper", "--file-name", file_path, "--device-id", "0", "--model-name", "openai/whisper-large-v3", "--task", "transcribe", "--timestamp", "chunk", "--transcript-path", output_file ] try: subprocess.run(command, check=True) except Exception as e: return f"Error in transcription: {str(e)}" # Process the JSON file in chunks to avoid memory overflow result = [] try: with open(output_file, "r") as f: for line in f: chunk = json.loads(line.strip()) # Read JSON line by line result.append(chunk.get("text", "")) except Exception as e: return f"Error reading transcription file: {str(e)}" cleanup_files(output_file) if temp_audio: cleanup_files(temp_audio) return " ".join(result)[:500000] # Limit transcription size def generate_summary_stream(transcription): """Summarizes the transcription efficiently to avoid memory overflow.""" detected_language = langdetect.detect(transcription[:1000]) # Detect using a smaller portion # Use smaller chunks for processing chunk_size = 2000 transcript_chunks = [transcription[i:i+chunk_size] for i in range(0, len(transcription), chunk_size)] summary_result = [] for chunk in transcript_chunks[:3]: # Process only the first 3 chunks to avoid OOM prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}:\n{chunk}""" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) output_ids = model.generate(input_ids, max_length=300) # Limit output size response = tokenizer.decode(output_ids[0], skip_special_tokens=True) summary_result.append(response) return "\n\n".join(summary_result) def process_youtube(url): """Handles YouTube video processing: downloads audio, transcribes it, and cleans up.""" if not url: return "Please enter a YouTube URL.", None audio_file = download_youtube_audio(url) if "Error" in audio_file or audio_file == "Download Failed": return audio_file, None transcription = transcribe_audio(audio_file) cleanup_files(audio_file) # Clean up the downloaded file return transcription, None def process_uploaded_video(video_path): """Processes uploaded video file for transcription.""" transcription = transcribe_audio(video_path) return transcription, None with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🎥 Video Transcription and Smart Summary Upload a video or provide a YouTube link to get a transcription and AI-generated summary. """) with gr.Tabs(): with gr.TabItem("📤 Video Upload"): video_input = gr.Video() video_button = gr.Button("🚀 Process Video") with gr.TabItem("🔗 YouTube Link"): url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...") url_button = gr.Button("🚀 Process URL") transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True) summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True) summary_button = gr.Button("📝 Generate Summary") video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output]) url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output]) summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output]) demo.launch()