import gradio as gr import torch import yt_dlp import os import subprocess import json from threading import Thread from transformers import AutoTokenizer, AutoModelForCausalLM import spaces import time import langdetect import uuid HF_TOKEN = os.environ.get("HF_TOKEN") print("Starting the program...") model_path = "Qwen/Qwen2.5-7B-Instruct" print(f"Loading model {model_path}...") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda() model = model.eval() print("Model successfully loaded.") def generate_unique_filename(extension): return f"{uuid.uuid4()}{extension}" def cleanup_files(*files): for file in files: if file and os.path.exists(file): os.remove(file) print(f"Removed file: {file}") def download_youtube_audio(url): print(f"Downloading audio from YouTube: {url}") output_path = generate_unique_filename(".wav") ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], 'outtmpl': output_path, 'keepvideo': True, } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) if os.path.exists(output_path + ".wav"): os.rename(output_path + ".wav", output_path) return output_path @spaces.GPU(duration=90) def transcribe_audio(file_path): print(f"Starting transcription of file: {file_path}") temp_audio = None if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): print("Video file detected. Extracting audio using ffmpeg...") temp_audio = generate_unique_filename(".wav") command = ["ffmpeg", "-i", file_path, "-q:a", "0", "-map", "a", temp_audio] subprocess.run(command, check=True) file_path = temp_audio output_file = generate_unique_filename(".json") command = [ "insanely-fast-whisper", "--file-name", file_path, "--device-id", "0", "--model-name", "openai/whisper-large-v3", "--task", "transcribe", "--timestamp", "chunk", "--transcript-path", output_file ] subprocess.run(command, check=True) with open(output_file, "r") as f: transcription = json.load(f) result = transcription.get("text", " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])) cleanup_files(output_file) if temp_audio: cleanup_files(temp_audio) return result def generate_summary_stream(transcription): detected_language = langdetect.detect(transcription) prompt = f"""Summarize the following video transcription in 150-300 words in {detected_language}: {transcription[:300000]}...""" response, history = model.chat(tokenizer, prompt, history=[]) return response def process_youtube(url): if not url: return "Please enter a YouTube URL.", None audio_file = download_youtube_audio(url) transcription = transcribe_audio(audio_file) cleanup_files(audio_file) return transcription, None def process_uploaded_video(video_path): transcription = transcribe_audio(video_path) return transcription, None with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🎥 Video Transcription and Smart Summary Upload a video or provide a YouTube link to get a transcription and AI-generated summary. """) with gr.Tabs(): with gr.TabItem("📤 Video Upload"): video_input = gr.Video() video_button = gr.Button("🚀 Process Video") with gr.TabItem("🔗 YouTube Link"): url_input = gr.Textbox(placeholder="https://www.youtube.com/watch?v=...") url_button = gr.Button("🚀 Process URL") transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True) summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True) summary_button = gr.Button("📝 Generate Summary") video_button.click(process_uploaded_video, inputs=[video_input], outputs=[transcription_output, summary_output]) url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output]) summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output]) demo.launch()