Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,33 @@ import whisper
|
|
6 |
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
7 |
import yt_dlp as youtube_dl
|
8 |
|
9 |
-
|
10 |
# App Configuration
|
11 |
-
st.set_page_config(page_title="Video-to-Text Summarization", layout="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Header
|
14 |
st.title("π₯ Smart Video-to-Text Summarization App")
|
@@ -23,24 +47,23 @@ This app helps you:
|
|
23 |
if "video_path" not in st.session_state:
|
24 |
st.session_state.video_path = None
|
25 |
|
26 |
-
#
|
27 |
st.header("Upload Your Video")
|
28 |
|
29 |
-
|
30 |
-
upload_option = st.selectbox("Select Upload Method", ["Local", "YouTube URL"])
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
video_file = st.file_uploader("Upload your video file", type=["mp4", "mkv", "avi"])
|
35 |
if video_file:
|
36 |
with open("uploaded_video.mp4", "wb") as f:
|
37 |
f.write(video_file.read())
|
38 |
st.session_state.video_path = "uploaded_video.mp4"
|
39 |
st.success("Video uploaded successfully!")
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
youtube_url = st.text_input("Enter YouTube URL")
|
44 |
if youtube_url:
|
45 |
try:
|
46 |
os.system(f"yt-dlp -o video.mp4 {youtube_url}")
|
@@ -49,12 +72,11 @@ elif upload_option == "YouTube URL":
|
|
49 |
except Exception as e:
|
50 |
st.error(f"Error downloading video: {str(e)}")
|
51 |
|
52 |
-
#
|
53 |
if st.session_state.video_path:
|
54 |
st.header("Process Your Video")
|
55 |
st.write(f"Processing {st.session_state.video_path}...")
|
56 |
-
|
57 |
-
# Extract Audio from Video
|
58 |
def extract_audio(video_path):
|
59 |
try:
|
60 |
audio = AudioSegment.from_file(video_path)
|
@@ -66,8 +88,7 @@ if st.session_state.video_path:
|
|
66 |
return None
|
67 |
|
68 |
audio_path = extract_audio(st.session_state.video_path)
|
69 |
-
|
70 |
-
# Real-time Audio Transcription
|
71 |
def transcribe_audio(audio_path):
|
72 |
try:
|
73 |
model = whisper.load_model("base")
|
@@ -81,11 +102,10 @@ if st.session_state.video_path:
|
|
81 |
if audio_path:
|
82 |
transcription = transcribe_audio(audio_path)
|
83 |
|
84 |
-
#
|
85 |
if 'transcription' in locals():
|
86 |
st.header("Results")
|
87 |
|
88 |
-
# Summarize Text
|
89 |
def summarize_text(text):
|
90 |
try:
|
91 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
@@ -98,7 +118,6 @@ if 'transcription' in locals():
|
|
98 |
|
99 |
summary = summarize_text(transcription)
|
100 |
|
101 |
-
# Translate Text
|
102 |
def translate_text(text, src_lang="en", tgt_lang="es"):
|
103 |
try:
|
104 |
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
@@ -117,4 +136,4 @@ if 'transcription' in locals():
|
|
117 |
translated_summary = translate_text(summary, tgt_lang=target_language)
|
118 |
|
119 |
else:
|
120 |
-
st.info("Please upload a video to start the process.")
|
|
|
6 |
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
7 |
import yt_dlp as youtube_dl
|
8 |
|
|
|
9 |
# App Configuration
|
10 |
+
st.set_page_config(page_title="Video-to-Text Summarization", layout="wide")
|
11 |
+
|
12 |
+
# Navbar-like Section
|
13 |
+
st.markdown("""
|
14 |
+
<style>
|
15 |
+
.nav-links {
|
16 |
+
display: flex;
|
17 |
+
justify-content: center;
|
18 |
+
gap: 20px;
|
19 |
+
}
|
20 |
+
.nav-links a {
|
21 |
+
text-decoration: none;
|
22 |
+
padding: 10px 20px;
|
23 |
+
background: #4CAF50;
|
24 |
+
color: white;
|
25 |
+
border-radius: 5px;
|
26 |
+
}
|
27 |
+
</style>
|
28 |
+
""", unsafe_allow_html=True)
|
29 |
+
|
30 |
+
st.markdown("""
|
31 |
+
<div class='nav-links'>
|
32 |
+
<a href='#local-upload'>Upload Local Video</a>
|
33 |
+
<a href='#youtube-upload'>Upload YouTube Video</a>
|
34 |
+
</div>
|
35 |
+
""", unsafe_allow_html=True)
|
36 |
|
37 |
# Header
|
38 |
st.title("π₯ Smart Video-to-Text Summarization App")
|
|
|
47 |
if "video_path" not in st.session_state:
|
48 |
st.session_state.video_path = None
|
49 |
|
50 |
+
# Upload Video Section
|
51 |
st.header("Upload Your Video")
|
52 |
|
53 |
+
col1, col2 = st.columns(2)
|
|
|
54 |
|
55 |
+
with col1:
|
56 |
+
st.subheader("π Upload Local Video")
|
57 |
+
video_file = st.file_uploader("Upload your video file", type=["mp4", "mkv", "avi"], key="local-upload")
|
58 |
if video_file:
|
59 |
with open("uploaded_video.mp4", "wb") as f:
|
60 |
f.write(video_file.read())
|
61 |
st.session_state.video_path = "uploaded_video.mp4"
|
62 |
st.success("Video uploaded successfully!")
|
63 |
|
64 |
+
with col2:
|
65 |
+
st.subheader("πΊ Upload YouTube Video")
|
66 |
+
youtube_url = st.text_input("Enter YouTube URL", key="youtube-upload")
|
67 |
if youtube_url:
|
68 |
try:
|
69 |
os.system(f"yt-dlp -o video.mp4 {youtube_url}")
|
|
|
72 |
except Exception as e:
|
73 |
st.error(f"Error downloading video: {str(e)}")
|
74 |
|
75 |
+
# Process Video Section
|
76 |
if st.session_state.video_path:
|
77 |
st.header("Process Your Video")
|
78 |
st.write(f"Processing {st.session_state.video_path}...")
|
79 |
+
|
|
|
80 |
def extract_audio(video_path):
|
81 |
try:
|
82 |
audio = AudioSegment.from_file(video_path)
|
|
|
88 |
return None
|
89 |
|
90 |
audio_path = extract_audio(st.session_state.video_path)
|
91 |
+
|
|
|
92 |
def transcribe_audio(audio_path):
|
93 |
try:
|
94 |
model = whisper.load_model("base")
|
|
|
102 |
if audio_path:
|
103 |
transcription = transcribe_audio(audio_path)
|
104 |
|
105 |
+
# Summarize and Translate Section
|
106 |
if 'transcription' in locals():
|
107 |
st.header("Results")
|
108 |
|
|
|
109 |
def summarize_text(text):
|
110 |
try:
|
111 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
|
118 |
|
119 |
summary = summarize_text(transcription)
|
120 |
|
|
|
121 |
def translate_text(text, src_lang="en", tgt_lang="es"):
|
122 |
try:
|
123 |
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
|
|
136 |
translated_summary = translate_text(summary, tgt_lang=target_language)
|
137 |
|
138 |
else:
|
139 |
+
st.info("Please upload a video to start the process.")
|