Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
| 4 |
+
from pydub import AudioSegment
|
| 5 |
+
import whisper
|
| 6 |
+
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
| 7 |
+
import yt_dlp as youtube_dl
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# App Configuration
|
| 11 |
+
st.set_page_config(page_title="Video-to-Text Summarization", layout="centered")
|
| 12 |
+
|
| 13 |
+
# Header
|
| 14 |
+
st.title("🎥 Video-to-Text Summarization App")
|
| 15 |
+
st.markdown("""
|
| 16 |
+
This app helps you:
|
| 17 |
+
- Convert videos into text and summarize them.
|
| 18 |
+
- Extract multilingual transcriptions and translations.
|
| 19 |
+
- Process videos with multiple speakers.
|
| 20 |
+
""")
|
| 21 |
+
|
| 22 |
+
# Temporary video storage
|
| 23 |
+
if "video_path" not in st.session_state:
|
| 24 |
+
st.session_state.video_path = None
|
| 25 |
+
|
| 26 |
+
# 1. Upload Video Section
|
| 27 |
+
st.header("Upload Your Video")
|
| 28 |
+
|
| 29 |
+
# Choose upload option
|
| 30 |
+
upload_option = st.selectbox("Select Upload Method", ["Local", "YouTube URL"])
|
| 31 |
+
|
| 32 |
+
# Upload Local File
|
| 33 |
+
if upload_option == "Local":
|
| 34 |
+
video_file = st.file_uploader("Upload your video file", type=["mp4", "mkv", "avi"])
|
| 35 |
+
if video_file:
|
| 36 |
+
with open("uploaded_video.mp4", "wb") as f:
|
| 37 |
+
f.write(video_file.read())
|
| 38 |
+
st.session_state.video_path = "uploaded_video.mp4"
|
| 39 |
+
st.success("Video uploaded successfully!")
|
| 40 |
+
|
| 41 |
+
# Download Video from YouTube
|
| 42 |
+
elif upload_option == "YouTube URL":
|
| 43 |
+
youtube_url = st.text_input("Enter YouTube URL")
|
| 44 |
+
if youtube_url:
|
| 45 |
+
try:
|
| 46 |
+
os.system(f"yt-dlp -o video.mp4 {youtube_url}")
|
| 47 |
+
st.session_state.video_path = "video.mp4"
|
| 48 |
+
st.success("YouTube video downloaded successfully!")
|
| 49 |
+
except Exception as e:
|
| 50 |
+
st.error(f"Error downloading video: {str(e)}")
|
| 51 |
+
|
| 52 |
+
# 2. Process Video Section (After Upload)
|
| 53 |
+
if st.session_state.video_path:
|
| 54 |
+
st.header("Process Your Video")
|
| 55 |
+
st.write(f"Processing {st.session_state.video_path}...")
|
| 56 |
+
|
| 57 |
+
# Extract Audio from Video
|
| 58 |
+
def extract_audio(video_path):
|
| 59 |
+
try:
|
| 60 |
+
audio = AudioSegment.from_file(video_path)
|
| 61 |
+
audio.export("extracted_audio.mp3", format="mp3")
|
| 62 |
+
st.success("Audio extracted successfully!")
|
| 63 |
+
return "extracted_audio.mp3"
|
| 64 |
+
except Exception as e:
|
| 65 |
+
st.error(f"Error in extracting audio: {str(e)}")
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
audio_path = extract_audio(st.session_state.video_path)
|
| 69 |
+
|
| 70 |
+
# Real-time Audio Transcription
|
| 71 |
+
def transcribe_audio(audio_path):
|
| 72 |
+
try:
|
| 73 |
+
model = whisper.load_model("base")
|
| 74 |
+
result = model.transcribe(audio_path)
|
| 75 |
+
st.text_area("Transcription", result['text'], height=200)
|
| 76 |
+
return result['text']
|
| 77 |
+
except Exception as e:
|
| 78 |
+
st.error(f"Error in transcription: {str(e)}")
|
| 79 |
+
return None
|
| 80 |
+
|
| 81 |
+
if audio_path:
|
| 82 |
+
transcription = transcribe_audio(audio_path)
|
| 83 |
+
|
| 84 |
+
# 3. Summarize and Translate
|
| 85 |
+
if 'transcription' in locals():
|
| 86 |
+
st.header("Results")
|
| 87 |
+
|
| 88 |
+
# Summarize Text
|
| 89 |
+
def summarize_text(text):
|
| 90 |
+
try:
|
| 91 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 92 |
+
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
|
| 93 |
+
st.text_area("Summary", summary[0]['summary_text'], height=150)
|
| 94 |
+
return summary[0]['summary_text']
|
| 95 |
+
except Exception as e:
|
| 96 |
+
st.error(f"Error in summarization: {str(e)}")
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
summary = summarize_text(transcription)
|
| 100 |
+
|
| 101 |
+
# Translate Text
|
| 102 |
+
def translate_text(text, src_lang="en", tgt_lang="es"):
|
| 103 |
+
try:
|
| 104 |
+
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
| 105 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
| 106 |
+
model = MarianMTModel.from_pretrained(model_name)
|
| 107 |
+
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True))
|
| 108 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 109 |
+
st.text_area("Translated Summary", translated_text, height=150)
|
| 110 |
+
return translated_text
|
| 111 |
+
except Exception as e:
|
| 112 |
+
st.error(f"Error in translation: {str(e)}")
|
| 113 |
+
return None
|
| 114 |
+
|
| 115 |
+
target_language = st.selectbox("Select Translation Language", ["es", "fr", "de", "zh"])
|
| 116 |
+
if target_language:
|
| 117 |
+
translated_summary = translate_text(summary, tgt_lang=target_language)
|
| 118 |
+
|
| 119 |
+
else:
|
| 120 |
+
st.info("Please upload a video to start the process.")
|