Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from moviepy.video.io.VideoFileClip import VideoFileClip
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import whisper
|
6 |
+
from transformers import pipeline, MarianMTModel, MarianTokenizer
|
7 |
+
import yt_dlp as youtube_dl
|
8 |
+
|
9 |
+
|
10 |
+
# App Configuration
|
11 |
+
st.set_page_config(page_title="Video-to-Text Summarization", layout="centered")
|
12 |
+
|
13 |
+
# Header
|
14 |
+
st.title("🎥 Video-to-Text Summarization App")
|
15 |
+
st.markdown("""
|
16 |
+
This app helps you:
|
17 |
+
- Convert videos into text and summarize them.
|
18 |
+
- Extract multilingual transcriptions and translations.
|
19 |
+
- Process videos with multiple speakers.
|
20 |
+
""")
|
21 |
+
|
22 |
+
# Temporary video storage
|
23 |
+
if "video_path" not in st.session_state:
|
24 |
+
st.session_state.video_path = None
|
25 |
+
|
26 |
+
# 1. Upload Video Section
|
27 |
+
st.header("Upload Your Video")
|
28 |
+
|
29 |
+
# Choose upload option
|
30 |
+
upload_option = st.selectbox("Select Upload Method", ["Local", "YouTube URL"])
|
31 |
+
|
32 |
+
# Upload Local File
|
33 |
+
if upload_option == "Local":
|
34 |
+
video_file = st.file_uploader("Upload your video file", type=["mp4", "mkv", "avi"])
|
35 |
+
if video_file:
|
36 |
+
with open("uploaded_video.mp4", "wb") as f:
|
37 |
+
f.write(video_file.read())
|
38 |
+
st.session_state.video_path = "uploaded_video.mp4"
|
39 |
+
st.success("Video uploaded successfully!")
|
40 |
+
|
41 |
+
# Download Video from YouTube
|
42 |
+
elif upload_option == "YouTube URL":
|
43 |
+
youtube_url = st.text_input("Enter YouTube URL")
|
44 |
+
if youtube_url:
|
45 |
+
try:
|
46 |
+
os.system(f"yt-dlp -o video.mp4 {youtube_url}")
|
47 |
+
st.session_state.video_path = "video.mp4"
|
48 |
+
st.success("YouTube video downloaded successfully!")
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Error downloading video: {str(e)}")
|
51 |
+
|
52 |
+
# 2. Process Video Section (After Upload)
|
53 |
+
if st.session_state.video_path:
|
54 |
+
st.header("Process Your Video")
|
55 |
+
st.write(f"Processing {st.session_state.video_path}...")
|
56 |
+
|
57 |
+
# Extract Audio from Video
|
58 |
+
def extract_audio(video_path):
|
59 |
+
try:
|
60 |
+
audio = AudioSegment.from_file(video_path)
|
61 |
+
audio.export("extracted_audio.mp3", format="mp3")
|
62 |
+
st.success("Audio extracted successfully!")
|
63 |
+
return "extracted_audio.mp3"
|
64 |
+
except Exception as e:
|
65 |
+
st.error(f"Error in extracting audio: {str(e)}")
|
66 |
+
return None
|
67 |
+
|
68 |
+
audio_path = extract_audio(st.session_state.video_path)
|
69 |
+
|
70 |
+
# Real-time Audio Transcription
|
71 |
+
def transcribe_audio(audio_path):
|
72 |
+
try:
|
73 |
+
model = whisper.load_model("base")
|
74 |
+
result = model.transcribe(audio_path)
|
75 |
+
st.text_area("Transcription", result['text'], height=200)
|
76 |
+
return result['text']
|
77 |
+
except Exception as e:
|
78 |
+
st.error(f"Error in transcription: {str(e)}")
|
79 |
+
return None
|
80 |
+
|
81 |
+
if audio_path:
|
82 |
+
transcription = transcribe_audio(audio_path)
|
83 |
+
|
84 |
+
# 3. Summarize and Translate
|
85 |
+
if 'transcription' in locals():
|
86 |
+
st.header("Results")
|
87 |
+
|
88 |
+
# Summarize Text
|
89 |
+
def summarize_text(text):
|
90 |
+
try:
|
91 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
92 |
+
summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
|
93 |
+
st.text_area("Summary", summary[0]['summary_text'], height=150)
|
94 |
+
return summary[0]['summary_text']
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Error in summarization: {str(e)}")
|
97 |
+
return None
|
98 |
+
|
99 |
+
summary = summarize_text(transcription)
|
100 |
+
|
101 |
+
# Translate Text
|
102 |
+
def translate_text(text, src_lang="en", tgt_lang="es"):
|
103 |
+
try:
|
104 |
+
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
105 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
106 |
+
model = MarianMTModel.from_pretrained(model_name)
|
107 |
+
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True))
|
108 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
109 |
+
st.text_area("Translated Summary", translated_text, height=150)
|
110 |
+
return translated_text
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"Error in translation: {str(e)}")
|
113 |
+
return None
|
114 |
+
|
115 |
+
target_language = st.selectbox("Select Translation Language", ["es", "fr", "de", "zh"])
|
116 |
+
if target_language:
|
117 |
+
translated_summary = translate_text(summary, tgt_lang=target_language)
|
118 |
+
|
119 |
+
else:
|
120 |
+
st.info("Please upload a video to start the process.")
|