import os import streamlit as st from moviepy.video.io.VideoFileClip import VideoFileClip from pydub import AudioSegment import whisper from transformers import pipeline, MarianMTModel, MarianTokenizer import yt_dlp as youtube_dl # App Configuration st.set_page_config(page_title="Video-to-Text Summarization", layout="centered") # Header st.title("🎥 Smart Video-to-Text Summarization App") st.markdown(""" This app helps you: - Convert videos into text and summarize them. - Extract multilingual transcriptions and translations. - Process videos with multiple speakers. """) # Temporary video storage if "video_path" not in st.session_state: st.session_state.video_path = None # 1. Upload Video Section st.header("Upload Your Video") # Choose upload option upload_option = st.selectbox("Select Upload Method", ["Local", "YouTube URL"]) # Upload Local File if upload_option == "Local": video_file = st.file_uploader("Upload your video file", type=["mp4", "mkv", "avi"]) if video_file: with open("uploaded_video.mp4", "wb") as f: f.write(video_file.read()) st.session_state.video_path = "uploaded_video.mp4" st.success("Video uploaded successfully!") # Download Video from YouTube elif upload_option == "YouTube URL": youtube_url = st.text_input("Enter YouTube URL") if youtube_url: try: os.system(f"yt-dlp -o video.mp4 {youtube_url}") st.session_state.video_path = "video.mp4" st.success("YouTube video downloaded successfully!") except Exception as e: st.error(f"Error downloading video: {str(e)}") # 2. Process Video Section (After Upload) if st.session_state.video_path: st.header("Process Your Video") st.write(f"Processing {st.session_state.video_path}...") # Extract Audio from Video def extract_audio(video_path): try: audio = AudioSegment.from_file(video_path) audio.export("extracted_audio.mp3", format="mp3") st.success("Audio extracted successfully!") return "extracted_audio.mp3" except Exception as e: st.error(f"Error in extracting audio: {str(e)}") return None audio_path = extract_audio(st.session_state.video_path) # Real-time Audio Transcription def transcribe_audio(audio_path): try: model = whisper.load_model("base") result = model.transcribe(audio_path) st.text_area("Transcription", result['text'], height=200) return result['text'] except Exception as e: st.error(f"Error in transcription: {str(e)}") return None if audio_path: transcription = transcribe_audio(audio_path) # 3. Summarize and Translate if 'transcription' in locals(): st.header("Results") # Summarize Text def summarize_text(text): try: summarizer = pipeline("summarization", model="facebook/bart-large-cnn") summary = summarizer(text, max_length=150, min_length=30, do_sample=False) st.text_area("Summary", summary[0]['summary_text'], height=150) return summary[0]['summary_text'] except Exception as e: st.error(f"Error in summarization: {str(e)}") return None summary = summarize_text(transcription) # Translate Text def translate_text(text, src_lang="en", tgt_lang="es"): try: model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True)) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) st.text_area("Translated Summary", translated_text, height=150) return translated_text except Exception as e: st.error(f"Error in translation: {str(e)}") return None target_language = st.selectbox("Select Translation Language", ["es", "fr", "de", "zh"]) if target_language: translated_summary = translate_text(summary, tgt_lang=target_language) else: st.info("Please upload a video to start the process.")