Spaces:
Sleeping
Sleeping
File size: 2,695 Bytes
0acc039 84af1e0 0acc039 d76d7a2 0acc039 84af1e0 d76d7a2 0acc039 d76d7a2 0acc039 d76d7a2 fa6575e 0acc039 fa6575e 0acc039 fa6575e 0acc039 fa6575e 0acc039 fa6575e d76d7a2 0acc039 d76d7a2 fa6575e 0acc039 84af1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
from collections import defaultdict
import streamlit as st
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
default_url = "https://rocm.docs.amd.com/en/latest/what-is-rocm.html"
st.title("URL Loader")
embeddings = OpenAIEmbeddings()
url = st.text_input("Provide URL ", default_url)
if "url_dict" not in st.session_state:
st.session_state.url_dict = {}
if url not in st.session_state.url_dict:
loader = WebBaseLoader(url)
documents = loader.load()
st.session_state.url_dict[url] = defaultdict(dict)
st.session_state.url_dict[url]['documents'] = documents
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
print(db.index.ntotal)
url_hash = "faiss_index" + str(abs(hash(url)))
db.save_local(url_hash)
st.session_state.url_dict[url]['FAISS_db'] = url_hash
llm = ChatOpenAI(temperature=0.1)
prompt = ChatPromptTemplate.from_template("""
Answer the user's question:
Context: {context}
Question : {input}
""")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages[-2:]:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# React to user input
if question := st.chat_input("Ask Question to the URL provided"):
# Display user message in chat message container
st.chat_message("user").markdown(question)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": question})
db = FAISS.load_local(st.session_state.url_dict[url]['FAISS_db'],
embeddings, allow_dangerous_deserialization=True)
document_chain = create_stuff_documents_chain(
llm=llm,
prompt=prompt
)
retriever = db.as_retriever(search_kwargs={"k": 2})
chain = create_retrieval_chain(retriever, document_chain)
response = chain.invoke({
"input" : question
})
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response["answer"])
st.session_state.messages.append({"role": "assistant", "content": response["answer"]})
|