Jai12345 commited on
Commit
0348ce3
·
1 Parent(s): c250fa5

Create new file

Browse files
Files changed (1) hide show
  1. app.py +186 -0
app.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sentence_transformers import SentenceTransformer, CrossEncoder, util
2
+ import re
3
+ from newspaper3k import Article
4
+ import docx2txt
5
+ from io import StringIO
6
+ from PyPDF2 import PdfFileReader
7
+ import validators
8
+ import streamlit as st
9
+ import nltk
10
+ import pandas as pd
11
+ import requests
12
+
13
+ nltk.download('punkt')
14
+
15
+ from nltk import sent_tokenize
16
+
17
+ warnings.filterwarnings("ignore")
18
+
19
+
20
+ def extarct_test_from_url(url: str):
21
+ article = Article(url)
22
+ article.download()
23
+ article.parse
24
+
25
+ # receiving text
26
+ text = article.text
27
+ title = article.title
28
+ return title, text
29
+
30
+
31
+ def extract_text_from_file(file):
32
+ if file.type == "text/plain":
33
+ # To convert to a string based IO:
34
+ stringio = StringIO(file.getvalue().decode("utf-8"))
35
+ file_text = stringio.read()
36
+ return file_text, None
37
+ elif file.type == "application/pdf":
38
+ pdfReader = PdfFileReader(file)
39
+ count = pdfReader.numPages
40
+ all_text = ""
41
+ pdf_title = pdfReader.getDocumentInfo().title
42
+ for i in range(count):
43
+ try:
44
+ page = pdfReader.getPage(i)
45
+ all_text += page.extractText()
46
+ except:
47
+ continue
48
+ file_text = all_text
49
+ return file_text, pdf_title
50
+ # read docx file
51
+ elif (
52
+ file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"):
53
+ file_text = docx2txt.process(file)
54
+ return file_text, None
55
+
56
+
57
+ def preprocess_plain_text(text, window_size=3):
58
+ text = text.encode("ascii", "ignore").decode() # unicode
59
+ text = re.sub(r"https*\S+", " ", text) # url
60
+ text = re.sub(r"@\S+", " ", text) # mentions
61
+ text = re.sub(r"#\S+", " ", text) # hastags
62
+ text = re.sub(r"\s{2,}", " ", text) # over spaces
63
+ text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
64
+ # removing spaces
65
+ lines = [line.strip() for line in text.splitlines()]
66
+ # break multi-headlines into a line each
67
+ chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
68
+ # drop blank lines
69
+ text = '\n'.join(chunk for chunk in chunks if chunk)
70
+ paragraphs = []
71
+ for paragraph in text.replace('\n', ' ').split("\n\n"):
72
+ if len(paragraph.strip()) > 0:
73
+ paragraphs.append(sent_tokenize(paragraph.strip()))
74
+
75
+ window_size = window_size
76
+ passages = []
77
+ for paragraph in paragraphs:
78
+ for start_idx in range(0, len(paragraph), window_size):
79
+ end_idx = min(start_idx + window_size, len(paragraph))
80
+ passages.append(" ".join(paragraph[start_idx:end_idx]))
81
+
82
+ return passages
83
+
84
+
85
+ def biencode(bi_enc, passages):
86
+ global bi_encoder
87
+ bi_encoder = SentenceTransformer(bi_enc)
88
+
89
+ # Compute the embeddings using the multi-process pool
90
+ with st.spinner('Encoding passages into a vector space...'):
91
+ corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
92
+
93
+ st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}")
94
+
95
+ return bi_encoder, corpus_embeddings
96
+
97
+
98
+ def cross_encode():
99
+ global cross_encoder
100
+ # cross-encoder to re-rank the results list to improve the quality
101
+ cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
102
+ return cross_encoder
103
+
104
+
105
+ def display_as_table(model, top_k, score='score'):
106
+ # Display the df with text and scores as a table
107
+ df = pd.DataFrame([(hit[score], passages[hit['corpus_id']]) for hit in model[0:top_k]], columns=['Score', 'Text'])
108
+ df['Score'] = round(df['Score'], 2)
109
+
110
+ return df
111
+
112
+
113
+ def search_func(query, top_k=top_k):
114
+ global bi_encoder, cross_encoder
115
+ st.subheader(f"Search Query: {query}")
116
+ if url_text:
117
+ st.write(f"Document Header: {title}")
118
+ elif pdf_title:
119
+ st.write(f"Document Header: {pdf_title}")
120
+ question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
121
+ question_embedding = question_embedding.cpu()
122
+ hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k, score_function=util.dot_score)
123
+ hits = hits[0]
124
+ # score all retrieved passages with the cross_encoder
125
+ cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
126
+ cross_scores = cross_encoder.predict(cross_inp)
127
+ # Sort results by the cross-encoder scores
128
+ for idx in range(len(cross_scores)):
129
+ hits[idx]['cross-score'] = cross_scores[idx]
130
+ # Output of top-3 hits
131
+ st.markdown("\n-------------------------\n")
132
+ st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits")
133
+ hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
134
+
135
+ rerank_df = display_df_as_table(hits, top_k, 'cross-score')
136
+ st.write(rerank_df.to_html(index=False), unsafe_allow_html=True)
137
+
138
+ def clear_text():
139
+ st.session_state["text_url"] = ""
140
+ st.session_state["text_input"] = ""
141
+
142
+ def clear_search_text():
143
+ st.session_state["text_input"] = ""
144
+
145
+ url_text = st.text_input("Enter a url here", value="https://en.wikipedia.org/wiki/Virat_Kohli", key='text_url',
146
+ on_change=clear_search_text)
147
+ st.markdown(
148
+ "<h3 style='text-align: center; color: red;'>OR</h3>",
149
+ unsafe_allow_html=True, )
150
+ upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file", key="upload")
151
+
152
+ search_query = st.text_input("Enter your search query here", value="How many Centuries Virat Kohli scored?",
153
+ key="text_input")
154
+ if validators.url(url_text):
155
+ # if input is URL
156
+ title, text = extract_text_from_url(url_text)
157
+ passages = preprocess_plain_text(text, window_size=window_size)
158
+
159
+ elif upload_doc:
160
+
161
+ text, pdf_title = extract_text_from_file(upload_doc)
162
+ passages = preprocess_plain_text(text, window_size=window_size)
163
+
164
+ col1, col2 = st.columns(2)
165
+
166
+ with col1:
167
+ search = st.button("Search", key='search_but', help='Click to Search!!')
168
+
169
+ with col2:
170
+ clear = st.button("Clear Text Input", on_click=clear_text, key='clear',
171
+ help='Click to clear the URL input and search query')
172
+
173
+ if search:
174
+ if bi_encoder_type:
175
+ with st.spinner(
176
+ text=f"Loading {bi_encoder_type} bi-encoder and embedding document into vector space. This might take a few seconds depending on the length of your document..."
177
+ ):
178
+ bi_encoder, corpus_embeddings = bi_encode(bi_encoder_type, passages)
179
+ cross_encoder = cross_encode()
180
+ bm25 = bm25_api(passages)
181
+
182
+ with st.spinner(
183
+ text="Embedding completed, searching for relevant text for given query and hits..."):
184
+ search_func(search_query, top_k)
185
+
186
+ st.markdown(""" """)