Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from PyPDF2 import PdfFileReader
|
|
8 |
import validators
|
9 |
import nltk
|
10 |
import streamlit as st
|
|
|
11 |
|
12 |
nltk.download('punkt')
|
13 |
|
@@ -153,8 +154,10 @@ def search_func(query):
|
|
153 |
elif pdf_title:
|
154 |
|
155 |
st.write(f"Document Header: {pdf_title}")
|
|
|
156 |
|
157 |
# Encode the query using the bi-encoder and find relevant answers
|
|
|
158 |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
159 |
question_embedding = question_embedding.cpu()
|
160 |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=2, score_function=util.dot_score)
|
|
|
8 |
import validators
|
9 |
import nltk
|
10 |
import streamlit as st
|
11 |
+
import pickle
|
12 |
|
13 |
nltk.download('punkt')
|
14 |
|
|
|
154 |
elif pdf_title:
|
155 |
|
156 |
st.write(f"Document Header: {pdf_title}")
|
157 |
+
|
158 |
|
159 |
# Encode the query using the bi-encoder and find relevant answers
|
160 |
+
corpus_embeddings = pd.read_pickle("corpus_embeddings_cpu.pkl")
|
161 |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
162 |
question_embedding = question_embedding.cpu()
|
163 |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=2, score_function=util.dot_score)
|