from sentence_transformers import SentenceTransformer, CrossEncoder, util import re import pandas as pd from newspaper import Article import docx2txt from io import StringIO from PyPDF2 import PdfFileReader import validators import nltk import warnings import streamlit as st nltk.download('punkt') from nltk import sent_tokenize warnings.filterwarnings("ignore") def extract_text_from_url(url: str): '''Extract text from url''' article = Article(url) article.download() article.parse() # get text text = article.text # get article title title = article.title return title, text def extract_text_from_file(file): '''Extract text from uploaded file''' # read text file if file.type == "text/plain": # To convert to a string based IO: stringio = StringIO(file.getvalue().decode("utf-8")) # To read file as string: file_text = stringio.read() return file_text, None # read pdf file elif file.type == "application/pdf": pdfReader = PdfFileReader(file) count = pdfReader.numPages all_text = "" pdf_title = pdfReader.getDocumentInfo().title for i in range(count): try: page = pdfReader.getPage(i) all_text += page.extractText() except: continue file_text = all_text return file_text, pdf_title # read docx file elif ( file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" ): file_text = docx2txt.process(file) return file_text, None def preprocess_plain_text(text, window_size=3): text = text.encode("ascii", "ignore").decode() # unicode text = re.sub(r"https*\S+", " ", text) # url text = re.sub(r"@\S+", " ", text) # mentions text = re.sub(r"#\S+", " ", text) # hastags text = re.sub(r"\s{2,}", " ", text) # over spaces text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!? # break into lines and remove leading and trailing space on each lines = [line.strip() for line in text.splitlines()] # #break multi-headlines into a line each chunks = [phrase.strip() for line in lines for phrase in line.split(" ")] # # drop blank lines text = '\n'.join(chunk for chunk in chunks if chunk) ## We split this article into paragraphs and then every paragraph into sentences paragraphs = [] for paragraph in text.replace('\n', ' ').split("\n\n"): if len(paragraph.strip()) > 0: paragraphs.append(sent_tokenize(paragraph.strip())) window_size = window_size passages = [] for paragraph in paragraphs: for start_idx in range(0, len(paragraph), window_size): end_idx = min(start_idx + window_size, len(paragraph)) passages.append(" ".join(paragraph[start_idx:end_idx])) st.write(f"Sentences: {sum([len(p) for p in paragraphs])}") st.write(f"Passages: {len(passages)}") return passages @st.experimental_memo(suppress_st_warning=True) def bi_encode(bi_enc, passages): global bi_encoder # We use the Bi-Encoder to encode all passages, so that we can use it with sematic search bi_encoder = SentenceTransformer(bi_enc) # quantize the model # bi_encoder = quantize_dynamic(model, {Linear, Embedding}) # Compute the embeddings using the multi-process pool with st.spinner('Encoding passages into a vector space...'): corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True) st.success(f"Embeddings computed. Shape: {corpus_embeddings.shape}") return bi_encoder, corpus_embeddings @st.experimental_singleton(suppress_st_warning=True) def cross_encode(): global cross_encoder # We use a cross-encoder, to re-rank the results list to improve the quality cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2') return cross_encoder bi_enc_options = ["multi-qa-mpnet-base-dot-v1", "all-mpnet-base-v2", "multi-qa-MiniLM-L6-cos-v1"] def display_as_table(model, top_k, score='score'): # Display the df with text and scores as a table df = pd.DataFrame([(hit[score], passages[hit['corpus_id']]) for hit in model[0:top_k]], columns=['Score', 'Text']) df['Score'] = round(df['Score'], 2) return df # Streamlit App st.title("Search with Retrieve & Rerank") # This function will search all wikipedia articles for passages that answer the query def search_func(query, top_k=top_k): global bi_encoder, cross_encoder st.subheader(f"Search Query: {query}") if url_text: st.write(f"Document Header: {title}") elif pdf_title: st.write(f"Document Header: {pdf_title}") # Encode the query using the bi-encoder and find potentially relevant passages question_embedding = bi_encoder.encode(query, convert_to_tensor=True) question_embedding = question_embedding.cpu() hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k, score_function=util.dot_score) hits = hits[0] # Get the hits for the first query # Now, score all retrieved passages with the cross_encoder cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] # Output of top-3 hits from bi-encoder st.markdown("\n-------------------------\n") st.subheader(f"Top-{top_k} Bi-Encoder Retrieval hits") hits = sorted(hits, key=lambda x: x['score'], reverse=True) cross_df = display_as_table(hits, top_k) st.write(cross_df.to_html(index=False), unsafe_allow_html=True) # Output of top-3 hits from re-ranker st.markdown("\n-------------------------\n") st.subheader(f"Top-{top_k} Cross-Encoder Re-ranker hits") hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) rerank_df = display_as_table(hits, top_k, 'cross-score') st.write(rerank_df.to_html(index=False), unsafe_allow_html=True) def clear_text(): st.session_state["text_url"] = "" st.session_state["text_input"] = "" def clear_search_text(): st.session_state["text_input"] = "" url_text = st.text_input("Please Enter a url here", value="https://en.wikipedia.org/wiki/Virat_Kohli", key='text_url', on_change=clear_search_text) st.markdown( "