Spaces:
Runtime error
Runtime error
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
import torch | |
import pickle | |
import pandas as pd | |
import gradio as gr | |
bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1") | |
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
corpus_embeddings = pd.read_pickle("corpus_embeddings_cpu.pkl") | |
corpus = pd.read_pickle("corpus.pkl") | |
def search(query, top_k=100): | |
print("Top Answer by the NSE:") | |
print() | |
ans = [] | |
# Encode the query using the bi-encoder and find relevant passage | |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) | |
hits = hits[0] # Get the hits for the first query | |
# Now, score all retrieved passages with the cross_encoder | |
cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits] | |
cross_scores = cross_encoder.predict(cross_inp) | |
# Sorting results by the cross-encoder scores | |
for idx in range(len(cross_scores)): | |
hits[idx]['cross-score'] = cross_scores[idx] | |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
for idx, hit in enumerate(hits[0:5]): | |
ans.append(corpus[hit['corpus_id']]) | |
return ans[0],ans[1],ans[2] | |
exp = ["Who is steve jobs?", "Who is Salman Khan?", "Who is Kevin Hart?", | |
"What is the most interesting thing about our universe?", "What are the most beautiful places on earth?"] | |
desc = "This is a semantic search engine made with sentence transformer." | |
inp = gr.inputs.Textbox(lines=1, placeholder=None, default="", label="search you query here") | |
out = gr.outputs.Textbox(type="auto", label="search results") | |
iface = gr.Interface(fn=search, inputs=inp, outputs=[out,out,out], examples=exp, article=desc, | |
title="Search Engine", theme="huggingface", layout='vertical') | |
iface.launch() |