Jai12345 commited on
Commit
81f6821
·
1 Parent(s): ef7b391

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -49
app.py DELETED
@@ -1,49 +0,0 @@
1
- from sentence_transformers import SentenceTransformer, CrossEncoder, util
2
- import torch
3
- import pickle
4
- import pandas as pd
5
-
6
-
7
- bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1")
8
- cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
9
- corpus_embeddings = pd.read_pickle("corpus_embeddings_cpu.pkl")
10
- corpus = pd.read_pickle("corpus.pkl")
11
-
12
-
13
- def search(query, top_k=100):
14
- print("Top 5 Answer by the NSE:")
15
- print()
16
- ans = []
17
- ##### Sematic Search #####
18
- # Encode the query using the bi-encoder and find potentially relevant passages
19
- question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
20
- hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
21
- hits = hits[0] # Get the hits for the first query
22
-
23
- ##### Re-Ranking #####
24
- # Now, score all retrieved passages with the cross_encoder
25
- cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits]
26
- cross_scores = cross_encoder.predict(cross_inp)
27
-
28
- # Sort results by the cross-encoder scores
29
- for idx in range(len(cross_scores)):
30
- hits[idx]['cross-score'] = cross_scores[idx]
31
-
32
- hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
33
-
34
- for idx, hit in enumerate(hits[0:5]):
35
- ans.append(corpus[hit['corpus_id']])
36
- return ans[0], ans[1], ans[2], ans[3], ans[4]
37
-
38
-
39
- exp = ["Who is steve jobs?", "What is coldplay?", "What is a turing test?",
40
- "What is the most interesting thing about our universe?", "What are the most beautiful places on earth?"]
41
-
42
- desc = "This is a semantic search engine powered by SentenceTransformers (Nils_Reimers) with a retrieval and reranking system on Wikipedia corous. This will return the top 5 results. So Quest on with Transformers."
43
-
44
- inp = gr.inputs.Textbox(lines=1, placeholder=None, default="", label="search you query here")
45
- out = gr.outputs.Textbox(type="auto", label="search results")
46
-
47
- iface = gr.Interface(fn=search, inputs=inp, outputs=[out, out, out, out, out], examples=exp, article=desc,
48
- title="Search Engine", theme="huggingface", layout='vertical')
49
- iface.launch()