from sentence_transformers import SentenceTransformer, CrossEncoder, util import torch import pickle import pandas as pd import gradio as gr bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1") cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") corpus_embeddings = pd.read_pickle("corpus_embeddings_cpu.pkl") corpus = pd.read_pickle("corpus.pkl") def search(query, top_k=100): print("Top 5 Answer by the NSE:") print() ans = [] ##### Sematic Search ##### # Encode the query using the bi-encoder and find potentially relevant passages question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query ##### Re-Ranking ##### # Now, score all retrieved passages with the cross_encoder cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits] cross_scores = cross_encoder.predict(cross_inp) # Sort results by the cross-encoder scores for idx in range(len(cross_scores)): hits[idx]['cross-score'] = cross_scores[idx] hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) for idx, hit in enumerate(hits[0:5]): ans.append(corpus[hit['corpus_id']]) return ans[0], ans[1], ans[2], ans[3], ans[4] exp = ["Who is steve jobs?", "What is coldplay?", "What is a turing test?", "What is the most interesting thing about our universe?", "What are the most beautiful places on earth?"] desc = "This is a semantic search engine powered by SentenceTransformers (Nils_Reimers) with a retrieval and reranking system on Wikipedia corous. This will return the top 5 results. So Quest on with Transformers." inp = gr.inputs.Textbox(lines=1, placeholder=None, default="", label="search you query here") out = gr.outputs.Textbox(type="auto", label="search results") iface = gr.Interface(fn=search, inputs=inp, outputs=[out, out, out, out, out], examples=exp, article=desc, title="Search Engine", theme="huggingface", layout='vertical') iface.launch()