import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_name = "Tom158/Nutri_Assist" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set pad token if not already set if model.config.pad_token_id is None: model.config.pad_token_id = model.config.eos_token_id # Streamlit App Interface st.title("Nutrition Chatbot") user_input = st.text_input("Ask me about nutrition:") if user_input: # Use encode_plus to get both input_ids and attention_mask inputs = tokenizer.encode_plus(user_input, return_tensors="pt", padding=True, truncation=True) input_ids = inputs['input_ids'] attention_mask = inputs['attention_mask'] # Print the input tensors for debugging st.write("Input IDs:", input_ids) st.write("Attention Mask:", attention_mask) # Generate output with attention mask and pad token ID try: # Increased max_length to 100 for more space for generation # Added temperature and top_k for better randomness and diversity outputs = model.generate(input_ids, attention_mask=attention_mask, max_length=150, temperature=0.7, top_k=50, num_return_sequences=1) # Debugging model raw output (just the token ids) st.write("Model Output (Raw Token IDs):", outputs) # Decode the output and display decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write("Decoded Answer:", decoded_output) except Exception as e: st.write("Error generating output:", str(e))