import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model model_name = "Tom158/Nutri_Assist" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_name) # Streamlit App Interface st.title("Nutrition Chatbot") user_input = st.text_input("Ask me about nutrition:") if user_input: # Process user input inputs = tokenizer.encode(user_input, return_tensors="pt") outputs = model.generate(inputs, max_length=50) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display answer st.write("Answer:", answer)