import streamlit as st from tensorflow.keras.models import load_model from huggingface_hub import from_pretrained_keras from PIL import Image import numpy as np import tensorflow as tf @st.cache_resource def load_model_h5(): model_path = hf_hub_download(repo_id="Jainam117/Sign_Langauge_digit_classification", filename="sign_lan_digit_model.h5") model = load_model(model_path) return model def preprocess_image(image): image = image.convert("L") image = image.resize((224, 224)) # Resize to 224x224, which the model expects image_array = np.array(image) image_array = image_array / 255.0 image_array = np.expand_dims(image_array, axis=-1) image_array = np.expand_dims(image_array, axis=0) return image_array def classify_image(model, image_array): predictions = model.predict(image_array) predicted_label = np.argmax(predictions, axis=1)[0] return predicted_label st.title("Sign Language Digit Classification") st.write("Upload an image of a hand showing a digit, and the model will classify the digit.") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) model = load_model() preprocessed_image = preprocess_image(image) predicted_digit = classify_image(model, preprocessed_image) st.write(f"Predicted Digit: {predicted_digit}")