Spaces:
Running
Running
Update core/vectorstore/vectorstore_manager.py
Browse files- core/vectorstore/vectorstore_manager.py +136 -136
core/vectorstore/vectorstore_manager.py
CHANGED
@@ -1,136 +1,136 @@
|
|
1 |
-
# core/vectorstore/vectorstore_manager.py
|
2 |
-
import os
|
3 |
-
import faiss
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.docstore.in_memory import InMemoryDocstore
|
6 |
-
from langchain_community.vectorstores import FAISS as FAISS_STORE
|
7 |
-
from vectorstore.document_processor import DocumentProcessor
|
8 |
-
from vectorstore.embeddings import EmbeddingManager
|
9 |
-
from vectorstore.distance_strategy import DistanceStrategyManager
|
10 |
-
from loguru import logger
|
11 |
-
|
12 |
-
|
13 |
-
class VectorStoreManager:
|
14 |
-
"""
|
15 |
-
Gestión minimalista de FAISS para EDULLM:
|
16 |
-
- Indexa documentos
|
17 |
-
- Carga/guarda el índice
|
18 |
-
- Expone retriever para RAG
|
19 |
-
"""
|
20 |
-
|
21 |
-
def __init__(self, path: str, name: str):
|
22 |
-
self.path = path
|
23 |
-
self.store_path = os.path.join("database", name)
|
24 |
-
self.embeddings = EmbeddingManager.get_embeddings()
|
25 |
-
self.strategy = DistanceStrategyManager().strategy
|
26 |
-
self.vectorstore = None
|
27 |
-
logger.info(f"🔹 Inicializando VectorStoreManager en ruta: {self.store_path}")
|
28 |
-
self._initialize()
|
29 |
-
|
30 |
-
def _initialize(self):
|
31 |
-
if self.exist_vectorstore():
|
32 |
-
logger.info("✅ Índice FAISS encontrado. Cargando desde disco...")
|
33 |
-
self.vectorstore = self.load_vectorstore()
|
34 |
-
else:
|
35 |
-
logger.warning("⚠️ No existe índice previo. Creando índice vacío...")
|
36 |
-
dummy = self.embeddings.embed_query("init")
|
37 |
-
index = faiss.IndexFlatL2(len(dummy))
|
38 |
-
self.vectorstore = FAISS_STORE(
|
39 |
-
embedding_function=self.embeddings,
|
40 |
-
index=index,
|
41 |
-
docstore=InMemoryDocstore(),
|
42 |
-
index_to_docstore_id={},
|
43 |
-
distance_strategy=self.strategy,
|
44 |
-
)
|
45 |
-
|
46 |
-
def create_vectorstore(self) -> None:
|
47 |
-
logger.info(f"🚀 Procesando documentos en '{self.path}' para indexar...")
|
48 |
-
docs = DocumentProcessor(self.path).files_to_texts()
|
49 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=400)
|
50 |
-
chunks = splitter.split_documents(docs)
|
51 |
-
self.vectorstore.add_documents(chunks)
|
52 |
-
self.save_vectorstore()
|
53 |
-
logger.success("🎯 Vectorstore creado y guardado correctamente.")
|
54 |
-
|
55 |
-
def save_vectorstore(self) -> None:
|
56 |
-
try:
|
57 |
-
os.makedirs(self.store_path, exist_ok=True)
|
58 |
-
self.vectorstore.save_local(self.store_path)
|
59 |
-
logger.info(f"💾 Índice guardado en '{self.store_path}'.")
|
60 |
-
except Exception as e:
|
61 |
-
logger.error(f"❌ Error al guardar el vectorstore: {e}")
|
62 |
-
|
63 |
-
def load_vectorstore(self):
|
64 |
-
try:
|
65 |
-
logger.info(f"📂 Cargando vectorstore desde '{self.store_path}'.")
|
66 |
-
return FAISS_STORE.load_local(
|
67 |
-
folder_path=self.store_path,
|
68 |
-
embeddings=self.embeddings,
|
69 |
-
allow_dangerous_deserialization=True,
|
70 |
-
distance_strategy=self.strategy,
|
71 |
-
)
|
72 |
-
except Exception as e:
|
73 |
-
logger.error(f"❌ Error al cargar el vectorstore: {e}")
|
74 |
-
raise
|
75 |
-
|
76 |
-
def exist_vectorstore(self) -> bool:
|
77 |
-
"""Verifica si el vectorstore existe, creando la carpeta base si es necesario."""
|
78 |
-
base_dir = "database"
|
79 |
-
|
80 |
-
if not os.path.isdir(base_dir):
|
81 |
-
logger.warning(f"📂 Directorio base '{base_dir}' no encontrado. Creando...")
|
82 |
-
os.makedirs(base_dir, exist_ok=True)
|
83 |
-
return False
|
84 |
-
|
85 |
-
if os.path.isdir(self.store_path):
|
86 |
-
logger.info(f"✅ Vectorstore encontrado en '{self.store_path}'.")
|
87 |
-
return True
|
88 |
-
else:
|
89 |
-
logger.info(f"ℹ️ Vectorstore no existe aún en '{self.store_path}'.")
|
90 |
-
return False
|
91 |
-
|
92 |
-
def as_retriever(
|
93 |
-
self,
|
94 |
-
search_type: str = "similarity_score_threshold",
|
95 |
-
k: int = 4,
|
96 |
-
score_threshold: float = 0.75,
|
97 |
-
fallback_to_similarity: bool = True,
|
98 |
-
**kwargs,
|
99 |
-
):
|
100 |
-
if not self.vectorstore:
|
101 |
-
self.vectorstore = self.load_vectorstore()
|
102 |
-
|
103 |
-
logger.debug(
|
104 |
-
f"🔍 Configurando retriever: type={search_type}, k={k}, threshold={score_threshold}"
|
105 |
-
)
|
106 |
-
search_kwargs = {"k": k, "score_threshold": score_threshold}
|
107 |
-
retriever = self.vectorstore.as_retriever(
|
108 |
-
search_type=search_type, search_kwargs=search_kwargs
|
109 |
-
)
|
110 |
-
|
111 |
-
if fallback_to_similarity:
|
112 |
-
logger.info(
|
113 |
-
"🛡️ Fallback activado: Si no hay resultados, se usará búsqueda por similarity."
|
114 |
-
)
|
115 |
-
|
116 |
-
class SafeRetriever:
|
117 |
-
def __init__(self, primary, fallback):
|
118 |
-
self.primary = primary
|
119 |
-
self.fallback = fallback
|
120 |
-
|
121 |
-
def invoke(self, query):
|
122 |
-
docs = self.primary.invoke(query)
|
123 |
-
if not docs:
|
124 |
-
logger.warning(
|
125 |
-
"⚠️ Sin resultados en threshold. Aplicando fallback a similarity."
|
126 |
-
)
|
127 |
-
return self.fallback.invoke(query)
|
128 |
-
return docs
|
129 |
-
|
130 |
-
fallback_retriever = self.vectorstore.as_retriever(
|
131 |
-
search_type="similarity", search_kwargs={"k": k}
|
132 |
-
)
|
133 |
-
|
134 |
-
return SafeRetriever(retriever, fallback_retriever)
|
135 |
-
|
136 |
-
return retriever
|
|
|
1 |
+
# core/vectorstore/vectorstore_manager.py
|
2 |
+
import os
|
3 |
+
import faiss
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
6 |
+
from langchain_community.vectorstores import FAISS as FAISS_STORE
|
7 |
+
from core.vectorstore.document_processor import DocumentProcessor
|
8 |
+
from core.vectorstore.embeddings import EmbeddingManager
|
9 |
+
from core.vectorstore.distance_strategy import DistanceStrategyManager
|
10 |
+
from loguru import logger
|
11 |
+
|
12 |
+
|
13 |
+
class VectorStoreManager:
|
14 |
+
"""
|
15 |
+
Gestión minimalista de FAISS para EDULLM:
|
16 |
+
- Indexa documentos
|
17 |
+
- Carga/guarda el índice
|
18 |
+
- Expone retriever para RAG
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, path: str, name: str):
|
22 |
+
self.path = path
|
23 |
+
self.store_path = os.path.join("database", name)
|
24 |
+
self.embeddings = EmbeddingManager.get_embeddings()
|
25 |
+
self.strategy = DistanceStrategyManager().strategy
|
26 |
+
self.vectorstore = None
|
27 |
+
logger.info(f"🔹 Inicializando VectorStoreManager en ruta: {self.store_path}")
|
28 |
+
self._initialize()
|
29 |
+
|
30 |
+
def _initialize(self):
|
31 |
+
if self.exist_vectorstore():
|
32 |
+
logger.info("✅ Índice FAISS encontrado. Cargando desde disco...")
|
33 |
+
self.vectorstore = self.load_vectorstore()
|
34 |
+
else:
|
35 |
+
logger.warning("⚠️ No existe índice previo. Creando índice vacío...")
|
36 |
+
dummy = self.embeddings.embed_query("init")
|
37 |
+
index = faiss.IndexFlatL2(len(dummy))
|
38 |
+
self.vectorstore = FAISS_STORE(
|
39 |
+
embedding_function=self.embeddings,
|
40 |
+
index=index,
|
41 |
+
docstore=InMemoryDocstore(),
|
42 |
+
index_to_docstore_id={},
|
43 |
+
distance_strategy=self.strategy,
|
44 |
+
)
|
45 |
+
|
46 |
+
def create_vectorstore(self) -> None:
|
47 |
+
logger.info(f"🚀 Procesando documentos en '{self.path}' para indexar...")
|
48 |
+
docs = DocumentProcessor(self.path).files_to_texts()
|
49 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=400)
|
50 |
+
chunks = splitter.split_documents(docs)
|
51 |
+
self.vectorstore.add_documents(chunks)
|
52 |
+
self.save_vectorstore()
|
53 |
+
logger.success("🎯 Vectorstore creado y guardado correctamente.")
|
54 |
+
|
55 |
+
def save_vectorstore(self) -> None:
|
56 |
+
try:
|
57 |
+
os.makedirs(self.store_path, exist_ok=True)
|
58 |
+
self.vectorstore.save_local(self.store_path)
|
59 |
+
logger.info(f"💾 Índice guardado en '{self.store_path}'.")
|
60 |
+
except Exception as e:
|
61 |
+
logger.error(f"❌ Error al guardar el vectorstore: {e}")
|
62 |
+
|
63 |
+
def load_vectorstore(self):
|
64 |
+
try:
|
65 |
+
logger.info(f"📂 Cargando vectorstore desde '{self.store_path}'.")
|
66 |
+
return FAISS_STORE.load_local(
|
67 |
+
folder_path=self.store_path,
|
68 |
+
embeddings=self.embeddings,
|
69 |
+
allow_dangerous_deserialization=True,
|
70 |
+
distance_strategy=self.strategy,
|
71 |
+
)
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"❌ Error al cargar el vectorstore: {e}")
|
74 |
+
raise
|
75 |
+
|
76 |
+
def exist_vectorstore(self) -> bool:
|
77 |
+
"""Verifica si el vectorstore existe, creando la carpeta base si es necesario."""
|
78 |
+
base_dir = "database"
|
79 |
+
|
80 |
+
if not os.path.isdir(base_dir):
|
81 |
+
logger.warning(f"📂 Directorio base '{base_dir}' no encontrado. Creando...")
|
82 |
+
os.makedirs(base_dir, exist_ok=True)
|
83 |
+
return False
|
84 |
+
|
85 |
+
if os.path.isdir(self.store_path):
|
86 |
+
logger.info(f"✅ Vectorstore encontrado en '{self.store_path}'.")
|
87 |
+
return True
|
88 |
+
else:
|
89 |
+
logger.info(f"ℹ️ Vectorstore no existe aún en '{self.store_path}'.")
|
90 |
+
return False
|
91 |
+
|
92 |
+
def as_retriever(
|
93 |
+
self,
|
94 |
+
search_type: str = "similarity_score_threshold",
|
95 |
+
k: int = 4,
|
96 |
+
score_threshold: float = 0.75,
|
97 |
+
fallback_to_similarity: bool = True,
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
if not self.vectorstore:
|
101 |
+
self.vectorstore = self.load_vectorstore()
|
102 |
+
|
103 |
+
logger.debug(
|
104 |
+
f"🔍 Configurando retriever: type={search_type}, k={k}, threshold={score_threshold}"
|
105 |
+
)
|
106 |
+
search_kwargs = {"k": k, "score_threshold": score_threshold}
|
107 |
+
retriever = self.vectorstore.as_retriever(
|
108 |
+
search_type=search_type, search_kwargs=search_kwargs
|
109 |
+
)
|
110 |
+
|
111 |
+
if fallback_to_similarity:
|
112 |
+
logger.info(
|
113 |
+
"🛡️ Fallback activado: Si no hay resultados, se usará búsqueda por similarity."
|
114 |
+
)
|
115 |
+
|
116 |
+
class SafeRetriever:
|
117 |
+
def __init__(self, primary, fallback):
|
118 |
+
self.primary = primary
|
119 |
+
self.fallback = fallback
|
120 |
+
|
121 |
+
def invoke(self, query):
|
122 |
+
docs = self.primary.invoke(query)
|
123 |
+
if not docs:
|
124 |
+
logger.warning(
|
125 |
+
"⚠️ Sin resultados en threshold. Aplicando fallback a similarity."
|
126 |
+
)
|
127 |
+
return self.fallback.invoke(query)
|
128 |
+
return docs
|
129 |
+
|
130 |
+
fallback_retriever = self.vectorstore.as_retriever(
|
131 |
+
search_type="similarity", search_kwargs={"k": k}
|
132 |
+
)
|
133 |
+
|
134 |
+
return SafeRetriever(retriever, fallback_retriever)
|
135 |
+
|
136 |
+
return retriever
|