Jam01 commited on
Commit
b8032e3
·
verified ·
1 Parent(s): eff4365

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +47 -0
  2. model.joblib +3 -0
  3. requirements.txt +5 -0
  4. unique_values.joblib +3 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ import pandas as pd
3
+ import streamlit as st
4
+
5
+
6
+ model = joblib.load('model.joblib')
7
+ unique_values = joblib.load('unique_values.joblib')
8
+
9
+ unique_education = unique_values["education"]
10
+ unique_self_employed = unique_values["self_employed"]
11
+
12
+
13
+ def main():
14
+ st.title("Loan Approve Prediction")
15
+
16
+ with st.form("questionaire"):
17
+ education = st.selectbox("Education", unique_education)
18
+ self_employed = st.selectbox("Self Employed", unique_self_employed)
19
+ no_of_dependents = st.slider("Number of Dependents", min_value=0 ,max_value=10)
20
+ income_annum = st.slider("Income Per Year",min_value=200000, max_value=1000000)
21
+ loan_amount = st.slider("Loan Amount", min_value=300000, max_value=40000000)
22
+ loan_term = st.slider("Loan Term (Year)", min_value=2, max_value=20)
23
+ cibil_score = st.slider("CIBIL Score", min_value=300, max_value=900)
24
+ residential_assets_value = st.slider("Residential Assets Value", min_value=-100000, max_value=30000000)
25
+ commercial_assets_value = st.slider("Commercial Assets Value", min_value=0,max_value=20000000)
26
+ luxury_assets_value = st.slider("Luxury Assets Value", min_value=0,max_value=50000000)
27
+ bank_asset_value = st.slider("Bank Assets Value", min_value=0,max_value=20000000)
28
+
29
+ clicked = st.form_submit_button("Loan Approve Prediction")
30
+ if clicked:
31
+ result=model.predict(pd.DataFrame({"no_of_dependents": [no_of_dependents],
32
+ "education": [education],
33
+ "self_employed": [self_employed],
34
+ "income_annum": [income_annum],
35
+ "loan_amount": [loan_amount],
36
+ "loan_term": [loan_term],
37
+ "cibil_score": [cibil_score],
38
+ "residential_assets_value": [residential_assets_value],
39
+ "commercial_assets_value": [commercial_assets_value],
40
+ "luxury_assets_value": [luxury_assets_value],
41
+ "bank_asset_value": [bank_asset_value]
42
+ }))
43
+ result = 'Approved' if result[0] == 1 else 'Declined'
44
+ st.success('The prediction of loan approval is {}'.format(result))
45
+
46
+ if __name__=='__main__':
47
+ main()
model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aee062cc8cdde4d12a54b73a643d93be3e38f5e60597bce004015eb36e48c24
3
+ size 9662
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ joblib
2
+ pandas
3
+ scikit-learn== 1.6.1
4
+ LightGBM==1.13.1
5
+ altair<5
unique_values.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6664a7ab1d9d9f7bce93db3a7b97600ffae7eef2d3e52289a325aaaf0e0c9c6c
3
+ size 742