import joblib import pandas as pd import streamlit as st model = joblib.load('model.joblib') unique_values = joblib.load('unique_values.joblib') unique_education = unique_values["education"] unique_self_employed = unique_values["self_employed"] def main(): st.title("Loan Approve Prediction") with st.form("questionaire"): education = st.selectbox("Education", unique_education) self_employed = st.selectbox("Self Employed", unique_self_employed) no_of_dependents = st.slider("Number of Dependents", min_value=0 ,max_value=10) income_annum = st.slider("Income Per Year",min_value=200000, max_value=1000000) loan_amount = st.slider("Loan Amount", min_value=300000, max_value=40000000) loan_term = st.slider("Loan Term (Year)", min_value=2, max_value=20) cibil_score = st.slider("CIBIL Score", min_value=300, max_value=900) residential_assets_value = st.slider("Residential Assets Value", min_value=-100000, max_value=30000000) commercial_assets_value = st.slider("Commercial Assets Value", min_value=0,max_value=20000000) luxury_assets_value = st.slider("Luxury Assets Value", min_value=0,max_value=50000000) bank_asset_value = st.slider("Bank Assets Value", min_value=0,max_value=20000000) clicked = st.form_submit_button("Loan Approve Prediction") if clicked: result=model.predict(pd.DataFrame({"no_of_dependents": [no_of_dependents], "education": [education], "self_employed": [self_employed], "income_annum": [income_annum], "loan_amount": [loan_amount], "loan_term": [loan_term], "cibil_score": [cibil_score], "residential_assets_value": [residential_assets_value], "commercial_assets_value": [commercial_assets_value], "luxury_assets_value": [luxury_assets_value], "bank_asset_value": [bank_asset_value] })) result = 'Approved' if result[0] == 1 else 'Declined' st.success('The prediction of loan approval is {}'.format(result)) if __name__=='__main__': main()