Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_experimental.agents import create_pandas_dataframe_agent
|
2 |
+
import pandas as pd
|
3 |
+
from langchain.llms import HuggingFaceHub
|
4 |
+
from langchain.agents.agent_types import AgentType
|
5 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
6 |
+
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
7 |
+
|
8 |
+
def query_agent(data, query):
|
9 |
+
# Parse the CSV file and create a Pandas DataFrame from its contents.
|
10 |
+
df = pd.read_csv(data)
|
11 |
+
|
12 |
+
llm = HuggingFaceEndpoint(repo_id="teknium/OpenHermes-2.5-Mistral-7B",
|
13 |
+
temperature = 0.9,
|
14 |
+
stop_sequences = ["\nQuestion:"])
|
15 |
+
|
16 |
+
# Create a Pandas DataFrame agent with the loaded model and processor
|
17 |
+
agent = create_pandas_dataframe_agent(llm,
|
18 |
+
df,
|
19 |
+
verbose=True,
|
20 |
+
handle_parsing_errors=True,
|
21 |
+
)
|
22 |
+
|
23 |
+
# Modify the query to include details for your new model usage
|
24 |
+
modified_query = query + " using tool python_repl_ast or any other relevant tool if needed. First Command you find is most likely to be the most accurate one so use it."
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# Run the agent with the modified model and processor instance
|
29 |
+
return agent.run(modified_query)
|