ChatModel_Demo / app.py
JamalAG's picture
Update app.py
a5a0bc7
raw
history blame
752 Bytes
import streamlit as st
from transformers import pipeline
# Load the conversational pipeline
conversational_pipeline = pipeline("conversational")
# Streamlit app header
st.title("Hugging Face Conversational Model Demo")
# Input for user message
user_message = st.text_input("You:", "")
if st.button("Send"):
# Format the conversation for the conversational pipeline
conversation_history = [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_message}]
# Get the model's response
model_response = conversational_pipeline(conversation_history)[0]['generated_responses'][0]
# Display the model's response
st.text_area("Model:", model_response, height=100)