Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.llms import HuggingFaceHub | |
from langchain.chains import LLMChain | |
from langchain.prompts import PromptTemplate | |
# Function to return the response | |
def generate_answer(query): | |
llm = HuggingFaceHub( | |
repo_id="google/flan-t5-xxl", | |
model_kwargs={"temperature": 0.7, "max_length": 64, "max_new_tokens": 512} | |
) | |
template = """Question: {question} | |
Answer: Let's give medical advices in kind way.""" | |
prompt = PromptTemplate(template=template, input_variables=["query"]) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
result = llm_chain.run(query) | |
return result | |
# App UI starts here | |
st.set_page_config(page_title="Doctor Assistant Demo", page_icon=":robot:") | |
st.header("Doctor Assistant Demo") | |
# Gets User Input | |
def get_text(): | |
input_text = st.text_input("You: ", key="input") | |
return input_text | |
user_input = get_text() | |
response = generate_answer(user_input) | |
submit = st.button("Generate") | |
# If the button clicked | |
if submit: | |
st.subheader("Doctor's Response:") | |
st.write(response) |