Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,33 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
|
|
3 |
|
4 |
-
# Load
|
5 |
-
|
|
|
6 |
|
7 |
# Streamlit app header
|
8 |
st.set_page_config(page_title="Conversational Model Demo", page_icon="🤖")
|
9 |
st.header("Conversational Model Demo")
|
10 |
|
|
|
|
|
|
|
11 |
# Input for user message
|
12 |
user_message = st.text_input("You:", "")
|
13 |
|
14 |
if st.button("Send"):
|
15 |
-
#
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
model_response =
|
21 |
|
22 |
# Display the model's response
|
23 |
st.text_area("Model:", model_response, height=100)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load DialoGPT model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
8 |
|
9 |
# Streamlit app header
|
10 |
st.set_page_config(page_title="Conversational Model Demo", page_icon="🤖")
|
11 |
st.header("Conversational Model Demo")
|
12 |
|
13 |
+
# Initialize chat history
|
14 |
+
chat_history_ids = None
|
15 |
+
|
16 |
# Input for user message
|
17 |
user_message = st.text_input("You:", "")
|
18 |
|
19 |
if st.button("Send"):
|
20 |
+
# Encode the new user input, add the eos_token and return a tensor in PyTorch
|
21 |
+
new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
|
22 |
+
|
23 |
+
# Append the new user input tokens to the chat history
|
24 |
+
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids
|
25 |
+
|
26 |
+
# Generate a response while limiting the total chat history to 1000 tokens
|
27 |
+
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
28 |
|
29 |
+
# Pretty print last output tokens from the bot
|
30 |
+
model_response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
31 |
|
32 |
# Display the model's response
|
33 |
st.text_area("Model:", model_response, height=100)
|