import streamlit as st from langchain.llms import HuggingFaceHub from langchain.chains import LLMChain from langchain.prompts import PromptTemplate #Function to return the response def generate_answer(query): llm = HuggingFaceHub( repo_id = "google/flan-t5-xxl", model_kwargs={"temperature": 0.7, "max_length": 64,"max_new_tokens":512} ) template = """Question: {query} Answer: Let's think step by step. """ PromptTemplate(template=template, input_variables=["query"]) llm_chain = LLMChain(prompt=prompt, llm=llm) result = llm_chain.run(query) return result #App UI starts here st.set_page_config(page_title = "LangChain Demo", page_icon = ":robot:") st.header("LangChain Demo") #Gets User Input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() response = generate_answer(user_input) submit = st.button("Generate") #If the button clicked if submit: st.subheader("Answer: ") st.write(response)