import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load DialoGPT model and tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium",padding_side='left) model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") # Streamlit app header st.set_page_config(page_title="Conversational Model Demo", page_icon="🤖") st.header("Conversational Model Demo") # Initialize chat history chat_history_ids = None # Input for user message user_message = st.text_input("You:", "") if st.button("Send"): # Encode the new user input, add the eos_token and return a tensor in PyTorch new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt') # Append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids # Generate a response while limiting the total chat history to 1000 tokens chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # Pretty print last output tokens from the bot model_response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) # Display the model's response st.text_area("Model:", model_response, height=100)