import streamlit as st from langchain.llms import HuggingFaceHub from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Function to return the response def generate_answer(query): llm = HuggingFaceHub( repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.7, "max_length": 64, "max_new_tokens": 512} ) template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate(template=template, input_variables=["query"]) llm_chain = LLMChain(prompt=prompt, llm=llm) result = llm_chain.run(query) return result # App UI starts here st.set_page_config(page_title="Doctor Assistant Demo", page_icon=":robot:") st.header("Doctor Assistant Demo") # Gets User Input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() response = generate_answer(user_input) submit = st.button("Generate") # If the button clicked if submit: st.subheader("Doctor's Response:") st.write(response)