import cv2 import gradio as gr import numpy as np import torch from diffusers import ControlNetModel, DiffusionPipeline, StableDiffusionControlNetPipeline from PIL import Image low_threshold = 100 high_threshold = 200 def generate( prompt, negative_prompt, num_inference_steps, width, height, guidance_scale, seed, input_image ): generator = torch.manual_seed(seed) if input_image is None: pipeline = DiffusionPipeline.from_pretrained("Lykon/DreamShaper") return pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, width=width, height=height, guidance_scale=guidance_scale, generator=generator, ).images[0] image = cv2.Canny(input_image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") pipeline = StableDiffusionControlNetPipeline.from_pretrained("Lykon/DreamShaper", controlnet=controlnet) return pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, width=width, height=height, guidance_scale=guidance_scale, generator=generator, image=canny_image, ).images[0] iface = gr.Interface( fn=generate, inputs=[ gr.Textbox(label="Prompt", value=""), gr.Textbox(label="Negative Prompt", value=""), gr.Slider(label="Sampling Steps", minimum=1, maximum=150, value=30, step=1), gr.Slider(label="Width", minimum=64, maximum=2048, value=512, step=1), gr.Slider(label="Height", minimum=64, maximum=2048, value=512, step=1), gr.Slider(label="CFG Scale", minimum=1, maximum=30, value=9, step=0.5), gr.Slider( label="Seed", info="Refresh the page to generate a new random seed.", minimum=0, maximum=4294967294, step=1, randomize=True, ), gr.Image(label="Input Image", source='upload', type="numpy") ], outputs="image", ) iface.launch()