James332 commited on
Commit
3d0b27e
·
1 Parent(s): 5e61785

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -112
app.py DELETED
@@ -1,112 +0,0 @@
1
- import gradio as gr
2
-
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
- from PIL import Image
7
- import tensorflow as tf
8
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
-
10
- feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
- "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
12
- )
13
- model = TFSegformerForSemanticSegmentation.from_pretrained(
14
- "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
15
- )
16
-
17
- def ade_palette():
18
- """ADE20K palette that maps each class to RGB values."""
19
- return [
20
- [204, 87, 92],
21
- [112, 185, 212],
22
- [45, 189, 106],
23
- [234, 123, 67],
24
- [78, 56, 123],
25
- [210, 32, 89],
26
- [90, 180, 56],
27
- [155, 102, 200],
28
- [33, 147, 176],
29
- [255, 183, 76],
30
- [67, 123, 89],
31
- [190, 60, 45],
32
- [134, 112, 200],
33
- [56, 45, 189],
34
- [200, 56, 123],
35
- [87, 92, 204],
36
- [120, 56, 123],
37
- [45, 78, 123],
38
- [156, 200, 56],
39
-
40
- ]
41
-
42
- labels_list = []
43
-
44
- with open(r'labels.txt', 'r') as fp:
45
- for line in fp:
46
- labels_list.append(line[:-1])
47
-
48
- colormap = np.asarray(ade_palette())
49
-
50
- def label_to_color_image(label):
51
- if label.ndim != 2:
52
- raise ValueError("Expect 2-D input label")
53
-
54
- if np.max(label) >= len(colormap):
55
- raise ValueError("label value too large.")
56
- return colormap[label]
57
-
58
- def draw_plot(pred_img, seg):
59
- fig = plt.figure(figsize=(20, 15))
60
-
61
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
62
-
63
- plt.subplot(grid_spec[0])
64
- plt.imshow(pred_img)
65
- plt.axis('off')
66
- LABEL_NAMES = np.asarray(labels_list)
67
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
68
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
69
-
70
- unique_labels = np.unique(seg.numpy().astype("uint8"))
71
- ax = plt.subplot(grid_spec[1])
72
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
73
- ax.yaxis.tick_right()
74
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
75
- plt.xticks([], [])
76
- ax.tick_params(width=0.0, labelsize=25)
77
- return fig
78
-
79
- def sepia(input_img):
80
- input_img = Image.fromarray(input_img)
81
-
82
- inputs = feature_extractor(images=input_img, return_tensors="tf")
83
- outputs = model(**inputs)
84
- logits = outputs.logits
85
-
86
- logits = tf.transpose(logits, [0, 2, 3, 1])
87
- logits = tf.image.resize(
88
- logits, input_img.size[::-1]
89
- ) # We reverse the shape of `image` because `image.size` returns width and height.
90
- seg = tf.math.argmax(logits, axis=-1)[0]
91
-
92
- color_seg = np.zeros(
93
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
94
- ) # height, width, 3
95
- for label, color in enumerate(colormap):
96
- color_seg[seg.numpy() == label, :] = color
97
-
98
- # Show image + mask
99
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
100
- pred_img = pred_img.astype(np.uint8)
101
-
102
- fig = draw_plot(pred_img, seg)
103
- return fig
104
-
105
- demo = gr.Interface(fn=sepia,
106
- inputs=gr.Image(shape=(400, 600)),
107
- outputs=['plot'],
108
- examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"],
109
- allow_flagging='never')
110
-
111
-
112
- demo.launch()